
 
 
 
 
 
 
 
 
 
 
 
 

 

  Wowza Media Server® Pro 

 
 
 
 
 
 
 
 

User’s Guide 



 
Wowza Media Server Pro: 

User’s Guide 

® 

Version 1.7  

Copyright  2006 – 2009 Wowza Media Systems, Inc. 
http://www.wowzamedia.com 

 

http://www.wowzamedia.com/


 

Copyright © 2006 - 2009 Wowza Media Systems, Inc. All rights reserved.  

Third-Party Information  

This document contains links to third-party websites that are not under the control of Wowza Media Systems, 
Inc. (“Wowza”) and Wowza is not responsible for the content on any linked site. If you access a third-party 
website mentioned in this document, then you do so at your own risk. Wowza provides these links only as a 
convenience, and the inclusion of any link does not imply that Wowza endorses or accepts any responsibility 
for the content on third-party sites.   

Trademarks  

Wowza, Wowza Media Systems, Wowza Media Server and related logos are trademarks of Wowza Media 
Systems, Inc., and may be registered in the United States or in other jurisdictions including internationally.   

Adobe and Flash are registered trademarks of Adobe Systems Incorporated, and may be registered in the  
United States or in other jurisdictions including internationally.   

Other product names, logos, designs, titles, words, or phrases mentioned may be trademarks, service marks or 
trade names of other entities and may be registered in certain jurisdictions including internationally.  

Third Party Copyright Notices 

Log4j and Mina: Copyright © 2006 The Apache Software Foundation  

Java ID3 Tag Library and JLayer 1.0 (classic): Copyright © 1991, 1999 Free Software Foundation, Inc. 

Java Service Wrapper: Copyright © 1999, 2006 Tanuki Software, Inc. 

 
 

 



 

 

Table of Contents 
 
Introduction................................................................................................................................... 5 

Server Capabilities.................................................................................................................................................5 
Real-Time Messaging Protocol (RTMP).................................................................................................................5 
Real-Time Streaming/Transport Protocols (RTSP/RTP) ........................................................................................6 
MPEG Transport Streams (MPEG-TS) ..................................................................................................................6 
Video and Audio Streaming ...................................................................................................................................6 
Remote Shared Objects (RSO) .............................................................................................................................6 
Custom Modules (Remote Procedure Calls)..........................................................................................................6 
Server Architecture and Hierarchy .........................................................................................................................7 
Wowza Pro Server Editions ...................................................................................................................................8 

Server Administration ................................................................................................................... 9 
Before Installation..................................................................................................................................................9 
Installing the Server ............................................................................................................................................. 10 
Starting and Stopping the Server ......................................................................................................................... 13 
Entering a New Serial Number ............................................................................................................................ 15 
Server Configuration............................................................................................................................................ 15 
Runtime Configuration ......................................................................................................................................... 21 
Application Configuration..................................................................................................................................... 22 
Logging................................................................................................................................................................ 26 
Server Security .................................................................................................................................................... 29 

Wowza Pro in Action ................................................................................................................... 32 
H.264/HE-AAC Streaming with Non-Flash Encoders (RTSP/RTP/MPEG-TS) ..................................................... 32 
Load Balancing.................................................................................................................................................... 38 
Multiple Server Live Streaming (Live Stream Repeater) ...................................................................................... 38 

Server Management Console and Monitoring ............................................................................ 41 
Local Management Using JConsole .................................................................................................................... 41 
Remote JMX Interface Configuration ................................................................................................................... 42 
Remote Management .......................................................................................................................................... 46 
Object Overview .................................................................................................................................................. 47 
Custom HTTP Interfaces (HTTPProvider)............................................................................................................ 48 

Client Side Scripting ................................................................................................................... 49 
Stream Types ...................................................................................................................................................... 49 
Client to Server Calls ........................................................................................................................................... 55 
Content Protection (SecureToken, SecureURLParams…)................................................................................... 56 
AddOn Packages................................................................................................................................................. 58 

Server Side Modules ................................................................................................................... 59 
Server Side Module Defined ................................................................................................................................ 59 
Included Modules................................................................................................................................................. 60 

Creating a Custom Module.......................................................................................................... 64 
Getting Started .................................................................................................................................................... 64 
Module Basics ..................................................................................................................................................... 65 
Custom Method Parameters ................................................................................................................................ 69 
Returning Results from a Custom Method ........................................................................................................... 69 
Module Logging ................................................................................................................................................... 70 
Server To Client Calls.......................................................................................................................................... 70 
Java Management Extensions (JMX) .................................................................................................................. 71 
Other Server Extension Options .......................................................................................................................... 72 

Virtual Hosting ............................................................................................................................ 74 
Configuration Files............................................................................................................................................... 74 
Typical Configuration ........................................................................................................................................... 75 

Examples & AddOn Packages .................................................................................................... 78 
SimpleVideoStreaming ........................................................................................................................................ 78 
FastPlayVideoStreaming ..................................................................................................................................... 78 
LiveVideoStreaming............................................................................................................................................. 78 
NativeRTPVideoStreaming .................................................................................................................................. 79 
VideoChat............................................................................................................................................................ 79 
VideoRecording ................................................................................................................................................... 79 
TextChat .............................................................................................................................................................. 79 
SHOUTcast ......................................................................................................................................................... 79 
RemoteSharedObjects ........................................................................................................................................ 79 
ServerSideModules ............................................................................................................................................. 79 
MediaSecurity...................................................................................................................................................... 79 
BWChecker ......................................................................................................................................................... 80 
LoadBalancer ...................................................................................................................................................... 80 
RTMPSConnectionModule .................................................................................................................................. 80 



U S E R ’ S  G U I D E  

Chapter 

1 
Introduction 
What is the Wowza Media Server Pro? 

owza Media Server Pro is an interactive RTMP server for streaming video, audio and 
data content to and from the Adobe® Flash® Player client, executing remote procedure 
calls and supporting remote shared objects. It is an alternative to the Adobe Flash Media 

Server product (FMIS and FMSS). In addition, Wowza Media Server Pro supports the Real-Time 
Streaming Protocol (RTSP), Real-time Transport Protocol (RTP) and MPEG Transport Streams 
(MPEG-TS) for incoming streaming of H.264/HE-AAC content.  Wowza Media Server Pro is a 
powerful and extensible Java based server that can be deployed on any platform that supports the 
Java 5 (aka 1.5) or later virtual machine. 

 W

Server Capabilities 
Wowza Media Server Pro communicates with the Flash player client over the RTMP protocol. It 
enables a wide range of multimedia and interactive Flash applications. The Wowza Pro server 
supports flash media streaming, H.264/ACC media streaming, MP3 audio streaming, video chat 
and video recording.  It also supports the server side component of remote shared objects. 
Wowza Media Server Pro enables you to implement custom application interfaces (custom 
modules) that are callable directly from the Flash player. 

Real-Time Messaging Protocol (RTMP) 
The Real-Time Messaging Protocol (RTMP) is the protocol that Wowza Media Server Pro uses to 
communicate with the Flash player client. Wowza Media Server Pro supports five variants of the 
protocol: RTMP, RTMPE (encrypted RTMP), RTMPT (tunneling), RTMPTE (encrypted 
RTMPT) and RTMPS (RTMPT over SSL). RTMP is the base protocol and is the most efficient 
and fastest of the five variants. RTMPT is a tunneling variant of the RTMP protocol that can be 
used to tunnel through firewalls that employ stateful packet inspection. RTMPE and RTMPTE 
are encrypted variants of the RTMP and RTMPT protocols that secure the data being transmitted 
between the Flash player and Wowza Pro.  Wowza Media Server Pro includes bi-directional 
support for Action Message Format (AMF) AMF3 and AMF0 for data serialization (AMF3 was 
introduced in Flash Player 9 and ActionScript 3.0). 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
5 



U S E R ’ S  G U I D E  

Real-Time Streaming/Transport Protocols (RTSP/RTP) 
Wowza Media Server Pro supports the Real-Time Streaming Protocol (RTSP) and Real-time 
Transport Protocol (RTP) for incoming streaming of H.264/HE-AAC content.  This enables the 
use of non-RTMP based live media encoders with Wowza Pro.  These streams are then translated 
(not transcoded) as needed for delivery to the Flash player client.  For details on supported 
RTSP/RTP encoders visit the Wowza Media Server Forums at 
http://www.wowzamedia.com/forums and choose the “Live Encoders” forum. 

MPEG Transport Streams (MPEG-TS) 
Wowza Media Server Pro supports MPEG Transport Streams (ISO 13818-1, H.222.0, MPEG-
TS) for incoming streaming of H.264/HE-AAC content.  This enables the use of non-RTMP 
based live media encoders with Wowza Pro.  These streams are then translated (not transcoded) 
as needed for delivery to the Flash player client.  For details on supported MPEG-TS encoders 
visit the Wowza Media Server Forums at http://www.wowzamedia.com/forums and choose the 
“Live Encoders” forum. 

Video and Audio Streaming 
Wowza Media Server Pro can stream video and audio content in Flash video format (.flv), H.264/ 
HE-AAC media format (.f4v, .mp4, .m4a, .mov, .mp4v, .3gp, and .3g2) and MP3 format (.mp3) 
to the Flash player client. The server supports the streaming of all variants of video, audio and 
metadata that can be stored in a Flash video file, H.264/HE-AAC content stored in an MP4 
(Quicktime container) file and audio and MP3 metadata stored in an MP3 audio file. 

Wowza Media Server Pro can also be used to re-stream SHOUTcast and Icecast MP3 and AAC+ 
audio streams to the Flash player client.  Wowza Pro will maintain a single connection back to the 
source SHOUTcast or Icecast server for each unique audio channel.  Wowza Pro is also able to 
forward the embedded metadata such as song title and artist to the Flash player client.  The 
SHOUTcast examples that ships with Wowza Pro illustrates these capabilities. 

Remote Shared Objects (RSO) 
Wowza Media Server Pro implements the server component of Remote Shared Objects. Remote 
Shared Objects are an extension of ActionScript objects that enables the sharing of object data 
between Flash movies on the same or different client machines. Shared data is synchronized by 
the server through an event based synchronization method. RSO’s can also be persisted on the 
server to maintain data across client sessions. 

Custom Modules (Remote Procedure Calls) 
Wowza Media Server Pro can be extended by coding custom modules which are directly callable 
by the Flash player client. Custom modules are implemented in Java and are dynamically linked 
into the server at runtime. Custom modules are a replacement for FMIS’s server-side scripting 
capabilities.  

Custom modules can also be used to extend the streaming capabilities of the server. These 
modules have full access to the video and audio stream at the packet level for both packets 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
6 

http://www.wowzamedia.com/forums
http://www.wowzamedia.com/forums


U S E R ’ S  G U I D E  

entering and leaving the server.  This level of access enables deep integration with other media 
servers or media delivery systems such as SHOUTcast, PBX phone systems, video surveillance 
systems and many others. 

The custom module interface can also be used to integrate Wowza Media Server Pro with other 
servers or backend APIs directly through Java, Service-Oriented Architecture Protocol (SOAP), 
remote procedure calls (RPC), the Java Native Interface (JNI) and Java Database Connectivity 
(JDBC). 

Server Architecture and Hierarchy 
Wowza Media Server Pro is a pure Java server. It is written in Java 5 (aka 1.5) and may be 
extended dynamically using custom modules. Wowza Pro can be deployed in any environment 
that supports the Java 5 virtual machine or later. Wowza Pro is implemented to be tight, small and 
embeddable. Much of the base functionality is encapsulated in modules (jar files) that can be 
omitted if that functionality is not being utilized to trim the overall footprint and secure the 
application. 

All logging for the application is done using the log4j logging component and full access is given 
to the configuration properties file. By default the server is setup to log to both the server console 
in a stripped down format as well as to log files using the W3C Extended Common Log Format 
(ECLF). 

At the top of the object hierarchy for the server is a virtual host (IVHost) object. Each virtual host 
contains a set of application (IApplication) objects and each application contains a set of 
application instance (IApplicationInstance) objects.  All client (IClient) objects, media streams 
(IMediaStreams) objects and remote shared object (IRemoteSharedObject) objects are children of 
an application instance object. 

 

 
Top level object hierarchy 

IApplicationInstance 

IApplication 

IVHost 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
7 



U S E R ’ S  G U I D E  

From the Flash player client, an application connects to a specific 
IVHost/IApplication/IApplicationInstance object through the NetStream connection url. For 
example:  

var nc:NetConnection; 
nc = new NetConnection(); 
nc.connect("rtmp://wowza.mycompany.com/myapplication/myinstance"); 

The first part of the url determines the protocol variant that is to be used (rtmp, rtmpt, rtmpe, 
rtmpte or rtmps). The domain portion “wowza.mycompany.com” determines to which virtual 
host to connect. The domain portion can also contain a port number in the form [domain]:[port] 
(“wowza.mycompany.com:80”). The “myapplication” portion specifies the application name and 
“myinstance” specifies the application instance name. The application instance name can be 
omitted. If the instance name is omitted it will connect to the “_definst_” application instance.  

Note 

If the port number is omitted in the connection string, the given protocol variant’s default port 
number is used.  The protocol variants have the following default port numbers; rtmp & rtmpe: 
1935, rtmpt & rtmpte: 80 and rtmps: 443. 

Once connected to a specific application instance, a client side application can create or connect 
to video and audio streams by creating a new NetStream object. It can connect to or create a new 
remote shared object using the SharedObject.getRemote() interface and can call remote 
procedures in a custom module using the NetConnection.call() interface. Examples of how this is 
done are presented later in this document. 

Wowza Pro Server Editions 
Wowza Media Server Pro comes in five editions: Pro10, Pro Unlimited, Pro Unlimited with 
MPEG-TS, Software Subscription and Wowza Pro Unlimited with MPEG-TS for Amazon EC2. 
The Pro10 and Pro Unlimited editions differ only in the number of concurrent connections the 
server can handle (10 and unlimited respectively) and licensing rights (see the Wowza Pro EULA 
for more information); all other functionality is exactly the same. The Pro Unlimited and Pro 
Unlimited with MPEG-TS editions differ only in the addition of support for incoming H.264 
streams via MPEG-TS to the Pro Unlimited with MPEG-TS edition and licensing rights (see the 
Wowza Media Server Pro EULA for more information); all other functionality is exactly the 
same. The Pro Software Subscription and Pro for EC2 editions have the exact same functionality 
as the Pro Unlimited with MPEG-TS edition and provide different licensing terms (see the 
Wowza Pro EULA and the Wowza Media Server Pro Unlimited for Amazon EC2 EULA, 
respectively, for more information).  The Wowza Pro Unlimited with MPEG-TS for Amazon 
EC2 edition is a pre-configured version of Wowza Pro Unlimited with MPEG-TS running in the 
Amazon Elastic Computing Cloud (EC2) environment.  See the following web page for more 
information: http://www.wowzamedia.com/ec2.php. 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
8 

http://www.wowzamedia.com/ec2.php


U S E R ’ S  G U I D E  

Chapter 

2 
Server Administration 
How do I setup, manage, deploy and monitor Wowza Media Server Pro? 

owza Media Server Pro is a small and powerful Java application. It is configured through 
a set of XML files. The server can be run standalone from a command shell or installed 
as a system service. Running the server standalone is best for developing Wowza Media 

Server Pro custom applications since the server can be started and stopped quickly and server log 
messages can be seen immediately in the console window.  Running the server as a system service 
is most often used for server deployment where there server needs to continue to run even after 
you log off the machine or be automatically started when the server is rebooted.  This chapter 
explains how to administer Wowza Media Server Pro. 

 W

Before Installation 
Wowza Media Server Pro is a Java 5 (aka 1.5) application.  To run, it requires the installation of a 
Java 5 or greater runtime environment with the exception of the software subscription licensed 
version which requires Java 6 (aka 1.6) or greater.  To develop server side applications, a Java 
Development Kit (JDK) version 5 or later is required.  The server also implements a JMX 
management and monitoring interface that requires a JMX based console on any machine that is 
going to be used to monitor the Wowza Pro server.  One of the more popular JMX consoles is 
JConsole, which ships with many Java vendor’s JDKs.  You can also monitor the server using the 
JMX perspective that ships with the Wowza IDE.  The Java Development Kit also includes the 
“server” runtime environment.  The “server” runtime environment is a better choice when 
running Wowza Pro in a production environment. 

So what does this all mean?  If you are developing server side applications, are deploying the 
server in a production environment or are going to monitor a local or remote Wowza Pro server 
on a machine, you need to install Java Development Kit version 5 (aka 1.5) or greater (Java 6 if 
subscription license).  If you are simply deploying Wowza Media Server Pro on a machine, then 
you need only install a Java runtime environment version 5 (aka 1.5) or greater (Java 6 if 
subscription license).   

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
9 



U S E R ’ S  G U I D E  

 

Note 

We suggest that you deploy Wowza Pro under the most recent version of either the Java 
Development Kit (JDK) or Java Runtime Environment (JRE) available on your platform.  

Note 

If running Wowza Pro under the Java Development Kit (JDK) environment, see the notes in the 
following forums threads for more information on how to configure Wowza Pro to use the 
“server” runtime environment: 

http://www.wowzamedia.com/forums/showthread.php?t=1320  

Once you have your Java environment installed and configured, you can validate that it is correct 
by opening a command prompt (command shell) and entering the command “java –version”.  If 
correctly installed and configured, it will return a version number that is equal to or greater than 
1.5. 

Note 

The support section of the Wowza Media Systems website contains additional information and 
links to help with obtaining the correct Java environment and tools for your platform.  You can 
visit this site at: http://www.wowzamedia.com.  

Note 

Wowza Pro on the Windows platform uses the JAVA_HOME environment variable to 
determine the location of the Java environment under which to run.  If you have problems 
starting Wowza Pro on Windows, double check to be sure the JAVA_HOME variable is pointing 
to a Java 5 (aka 1.5) or greater Java environment.  Also, when making changes or upgrades to your 
Java environment that may affect the installation path, be sure to update the JAVA_HOME 
variable to point to the new location.  The JAVA_HOME variable should point to the base folder 
of the Java installation.  This is the folder that contains the “bin” folder. 

Installing the Server 
On the Windows and Mac OS X platforms the Wowza Pro server is installed using an installer. 
On Linux, Solaris and other Unix based platforms, the software is installed using a self extracting 
binary installer.   

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
10 

http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/


U S E R ’ S  G U I D E  

Windows 

To install Wowza Media Server Pro on Windows, double-click the installer file and follow the 
instructions on the screen.  During the installation process you will be asked to enter the product 
serial number.  You cannot proceed with the installation until you have entered a valid serial 
number. 

To uninstall, choose “Uninstall Wowza Media Server Pro” from the “Start>Programs>Wowza 
Media Server Pro” menu. 

Mac OS X 

To install Wowza Media Server Pro on Mac OS X, mount the disk image (double-click .dmg) file, 
double-click the installer package (.pkg) file and follow the instructions on the screen.  Files will be 
installed to the following locations. 

/Applications/Wowza Media Server Pro 1.7.2 - server startup/shutdown scripts 
& documentation 

/Library/WowzaMediaServerPro - server application files and 
folders: applications, bin, conf, 
content, examples, lib and logs 

/Library/LaunchDaemons - background service script 
com.wowza.WowzaMediaServerPro.plist 

/Library/Receipts - installer receipt file 
WowzaMediaServerPro-1.7.2.pkg 

The first time you run the server in standalone mode you will be asked to enter your serial 
number.  The serial number is stored in the file “/Library/WowzaMediaServerPro/conf/ 
Server.license”.  There is information below on how to change your serial number if you need to 
upgrade your server license. 

To uninstall, throw the following folders and files into the trash. 

folder:  /Applications/Wowza Media Server Pro 1.7.2 
folder:  /Library/WowzaMediaServerPro-1.7.2 
symlink:  /Library/WowzaMediaServerPro 
file:  /Library/LaunchDaemons/com.wowza.WowzaMediaServerPro.plist  
file:  /Library/Receipts/WowzaMediaServerPro-1.7.2.pkg 

Linux  

To install on Linux systems follow the steps below: 

Red Hat Package Manager Systems 
sudo chmod +x WowzaMediaServerPro-1.7.2.rpm.bin 
sudo ./WowzaMediaServerPro-1.7.2.rpm.bin 

To uninstall: 

sudo rpm –e WowzaMediaServerPro-1.7.2-ga 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
11 



U S E R ’ S  G U I D E  

Debian Package Manager Systems 
sudo chmod +x WowzaMediaServerPro-1.7.2.deb.bin 
sudo ./WowzaMediaServerPro-1.7.2.deb.bin 

To uninstall: 

sudo dpkg –-purge wowzamediaserverpro 
 

You will be asked to agree to the “End User License Agreement”.  The package manager will 
extract and install the files in the “/usr/local/WowzaMediaServerPro-1.7.2” directory.  The server 
will be installed as the root user.  The first time you run the server in standalone mode you will be 
asked to enter your serial number.  The serial number is stored in the file 
“/usr/local/WowzaMediaServerPro/conf/ Server.license”.  There is information below on how 
to change your serial number if you need to upgrade your server license. 

Other Linux and Unix Systems 

To install the server on other Linux and Unix based systems, such as Solaris, open a terminal 
window.  Download “WowzaMediaServerPro-1.7.2.tar.bin” to any directory, and execute the self 
extracting installer: 

sudo chmod +x WowzaMediaServerPro-1.7.2.tar.bin 
sudo ./WowzaMediaServerPro-1.7.2.tar.bin 

You will be asked to agree to the “End User License Agreement”.  The self-extracting installer 
will install the files in the “/usr/local/WowzaMediaServerPro-1.7.2” directory.  The server will be 
installed as the root user.  The first time you run the server in standalone mode you will be asked 
to enter your serial number.  The serial number is stored in the file 
“/usr/local/WowzaMediaServerPro/conf/ Server.license”.  There is information below on how 
to change your serial number if you need to upgrade your server license. 

To uninstall: 

cd /usr/local 
rm –rf WowzaMediaServerPro-1.7.2 

Default TCP and UDP Ports  

Before streaming with Wowza Pro it is important that you open the following ports on your 
firewall.  The table below represents the defaults ports Wowza Pro uses for streaming.  All of 
these port numbers are configurable through the configuration files described later in this 
document. 

RTMP/RTMPT/RTMPE/RTSP-interleaved Streaming TCP 1935 
RTP UDP Streaming UDP 6970-9999 
JMX/JConsole Monitoring and Administration TCP 8084-8085 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
12 



U S E R ’ S  G U I D E  

Starting and Stopping the Server 

Windows: Standalone  

On Windows, Wowza Media Server Pro can be started and stopped from a DOS command 
prompt, from the “Start” menu or from the Windows “Services” administrative tool. To start the 
server from a DOS command prompt, open a DOS command prompt. Change directory (“cd”) 
to the “bin” directory of the server installation. The default location for this folder is:  

cd %WMSAPP_HOME%\bin 

To start the server, type in “.\startup.bat” and hit return. The startup script will open a new 
console window that contains all the server logging statements. To shutdown the server close the 
console window by clicking on the close box or by issuing the “.\shutdown.bat” command from 
the DOS command prompt. The server can also be started and stopped from the “Start” menu 
using the “Server Startup” and “Server Shutdown” menu items in the “Programs>Wowza Media 
Server Pro” program group. 

Windows: Service  

To start the server as a Windows service, open the “Settings>Control Panel>Administrative 
Tools>Services” administrative tool and locate the “Wowza Media Server Pro” entry in the list.  
Next, right click on the entry and select “Start” from the context menu.  To stop the server select 
“Stop” from the same context menu.  To configure the service to run each time Windows 
restarts, select “Properties” from the right click context menu, set “Startup type” to “Automatic” 
and click the “OK” button to close the dialog. 

Note 

By default the Windows service is running under the “Local System Account”.  This can limit 
how Wowza Pro can interact with the underlying operating system.  For example you might not 
be able to connect to Wowza Pro using JConsole/JMX or you may have issues streaming content 
from UNC paths.  To address these issues, modify the service to run as a named user in the  
“Log On” tab of the service properties dialog.  

Mac OSX: Standalone  

On Mac OS X the server can be started in standalone mode either by invoking it from the “Server 
Startup” script in “/Applications/Wowza Media Server Pro 1.7.2” or by opening a “Terminal” 
window and entering the following commands: 

cd /Library/WowzaMediaServerPro/bin 
./startup.sh 

Mac OSX: Service  

To start the server as a Mac OS X launchd service, open a “Terminal” window and enter: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
13 



U S E R ’ S  G U I D E  

sudo launchctl load -w /Library/LaunchDaemons/com.wowza.WowzaMediaServerPro.plist 

To stop the service, enter: 

sudo launchctl unload -w /Library/LaunchDaemons/com.wowza.WowzaMediaServerPro.plist 

Linux: Standalone   

On Linux and Mac OS X the server can either be started from a command shell or run as a 
service.  To start the server from command shell, enter the following commands: 

cd /usr/local/WowzaMediaServerPro/bin 
./startup.sh 

To stop the server enter: 

./shutdown.sh 

Linux: Service  

To start the server as a Linux service, open a command prompt and enter one of these two 
commands (it differs based on your Linux distribution): 

/sbin/service WowzaMediaServerPro start 
 
or 
 
/etc/init.d/WowzaMediaServerPro start 

To stop the service, enter one of these two commands: 

/sbin/service WowzaMediaServerPro stop 
 
or 
 
/etc/init.d/WowzaMediaServePro stop 

Note 

The method of running init.d based services may be different on different Linux distributions.  
Please consult your Linux manual if these instructions do not apply to your Linux distribution.   

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
14 



U S E R ’ S  G U I D E  

 

Note 

The Linux services script subsystem does not use the full $PATH definition to determine the 
location of Linux commands.  It uses what is known as the “init” path.  This can lead to an issue 
on Linux distributions where the default installation location for Java cannot be found by applying 
the “init” path.  See this forum post for more information: 

http://www.wowzamedia.com/forums/showthread.php?t=1511 

Entering a New Serial Number 
Wowza Media Server Pro stores serial number information in the following file (on each of the 
platforms): 

%WMSCONFIG_HOME%\conf\Server.license    - Windows 
/Library/WowzaMediaServerPro/conf/Server.license  - Mac OS X 
/usr/local/WowzaMediaServerPro/conf/Server.license  - Linux/Unix 

To change the serial number, edit this file and enter the new serial number.  Upon next launch of 
the standalone server, the last four digits of the serial number will be displayed in the console 
window. 

Server Configuration 
The server is configured through a set of XML, configuration and properties files in the “conf” 
folder of the main applications folder. These configuration files are read during server startup. 
The configuration files can be directly edited using a standard text editor. 

Note 

For up to date tuning information see the “General Tuning Instructions” forum thread: 

http://www.wowzamedia.com/forums/showthread.php?t=1320 

Server.xml 

The Server.xml configuration file is used to configure the server container environment. 

CommandInterface/HostPort – DomainName or IpAddress and Port 

The ip address and port used for the command interface to the server. The command interface is 
a direct socket connection interface that is used by the “BootStrap” class to shutdown and restart 
a running Wowza Pro server.  For secure deployment of the server it may be desirable to omit 
this section of the Server.xml file. If omitted the server will function properly but will no longer 
respond to shutdown and restart commands. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
15 

http://www.wowzamedia.com/forums/showthread.php?t=1511
http://www.wowzamedia.com/forums/showthread.php?t=1320


U S E R ’ S  G U I D E  

JMXRemoteConfiguration, AdminInterface 

Configuration for the remote Java Management Extensions (JMX) interface.  See the “Server 
Management Console and Monitoring” chapter for more information. 

UserAgents 

A “|” (pipe) delimited list of browser user agents that when encountered are interpreted as 
RTMPT/RTMPTE/RTMPTS connections. 

TransportThreadPool/PoolSize, HandlerThreadPool/PoolSize 

TransportThreadPool/PoolSize and HandlerThreadPool/PoolSize defines the maximum size of 
the server level threads in the transport and handler thread pools.  The transport thread pool is 
used to read/write data from the transport sockets.  The handler thread pool is used to process 
incoming messages.  The Server level thread pools are only used if a virtual host’s thread pool size 
is set to 0.  This server level thread pool is also used to process the shutdown command.  For this 
reason it should never be set to a value less than 10. 

RTP/ DatagramStartingPort 

RTP/DatagramStartingPort is lowest UDP port value assigned to incoming UDP streams.  Ports 
are assigned starting and this value incrementing by 1.  The most common value for RTSP/RTP 
based servers is 6970.  If you plan on supporting RTSP/RTP, native RTP or MPEG-TS streams 
it is best to open up UDP ports 6970-9999. 

ServerListeners/ServerListener - BaseClass 

ServerListeners is a list of Java classes that are loaded by the Wowza Pro server at server 
initialization and notified of events during the server lifecycle.  These custom classes can be used 
to extend the server to add functionality such as a SOAP interface or integration with a servlet 
container.  Consult the com.wowza.wms.server.IServerNotify2 class in the Wowza Media Server 
Pro Server Side API documentation for details. 

VHostListeners/VHostListener - BaseClass 

VHostListeners is a list of Java classes that are loaded by the Wowza Pro server at server 
initialization and notified of events during the server lifecycle.  These custom classes can be used 
to monitor the starting and stopping of virtual hosts and can be used to rewrite the connection 
information on per connection basis.  Consult the com.wowza.wms.vhost.IVHostNotify class in 
the Wowza Media Server Pro Server Side API documentation for details. 

VHosts.xml 

The VHosts.xml configuration file is used to define virtual host environments.  By default the 
server ships with a single virtual host environment named _defVHost_.  A complete description 
of this configuration file can be found in the “Virtual Hosting” chapter of this document. 

VHost.xml 

The VHost.xml configuration file is used to control the overall workings of a virtual host. It is 
used to set server ports and ip addresses as well as to configure the thread pool size.  Below is a 
description of each of the settings in the VHost.xml file. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
16 



U S E R ’ S  G U I D E  

HostPortList/HostPort – DomainName or IpAddress, Port and SSLFactoryClass 

The list of ip addresses and ports the server is going to listen on for incoming connections.  You 
can also provide the SSL class that is used to provide SSL handshake and encryption services.  
There are four child elements that are used to define a host port: “DomainName”, “IpAddress”, 
“Port” and “SSLFactoryClass”. The “DomainName” and “IpAddress” are mutually exclusive. If 
“DomainName” is specified the server will use DNS lookup to determine the ip address the 
server will use for this connection. If a “DomainName” or “IpAddress” of “*” (asterisk) is 
specified the server will listen on all local ip addresses for incoming connections.  A non-SSL 
connection can accept RTMP, RTMPE, RTMPT , RTMPTE, RTSP and HTTP connections. An 
SSL connection can only accept RTMPS connections. 

HostPortList/HostPort/ProcessorCount 

This is the number of threads used to service incoming requests over this socket connection.   See 
the “General Tuning Instructions” forum thread for up to date tuning suggestions. 

HostPortList/HostPort/SocketConfiguration – ReuseAddress, ReceiveBufferSize, SendBufferSize, 
KeepAlive and AcceptorBackLog 

This section is the detailed configuration of the socket connection that is created by this HostPort 
definition at runtime.  It is through these settings that you can tune the performance of the socket 
connections that will be used to send data into and out of the Wowza Pro server.  The 
SendBufferSize and ReceiveBufferSize are the two most important settings in this group.  They 
define the size of the memory buffers used during data transfer over the socket connection.      
See the “General Tuning Instructions” forum thread for up to date tuning suggestions for these 
settings. 

The ReuseAddress and KeepAlive settings should both be set to true and are only provided for 
completeness.   

The AcceptorBackLog setting controls the maximum number of TCP connection requests that 
can be pending before new connection requests are refused.  The Wowza Pro server will respond 
to TCP connection requests as quickly as possible.  This value should not be set to a value less 
than 50.  It can be set to a value of -1 which will allow the operating system to control the value 
(this is not always the best idea, some platforms will then use a very small value for this which will 
greatly increase connection times). 

HostPortList/HostPort/HTTPProvider – BaseClass and Properties 

This section references a custom Java class that will be used to service incoming HTTP requests 
over this HostPort.  The Wowza Pro server ships with three HTTPProvider classes: 

com.wowza.wms.http.HTTPServerVersion Returns version number 
com.wowza.wms.http.HTTPConnectionInfo Returns connection info 
com.wowza.wms.http.HTTPServerInfoXML Returns detailed info in XML 

The HTTPServerVersion class returns in HTML the current server version.  The 
HTTPConnectionInfo class returns the current number of connections to the server in the form 
“server=#”.  This class can be used to provide load balancing information to the Flash client.  
The “HTTPServerInfoXML” class returns detailed connection information in XML.  Consult the 
com.wowza.wms.http. IHTTPProvider class in the Wowza Media Server Pro Server Side API 
documentation for details on how to create your own HTTPProvider class. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
17 

http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/forums/showthread.php?t=1320


U S E R ’ S  G U I D E  

TransportThreadPool/PoolSize, HandlerThreadPool/PoolSize 

TransportThreadPool/PoolSize and HandlerThreadPool/PoolSize defines the maximum size of 
the virtual host level threads in the transport and handler thread pools.  The transport thread pool 
is used to read/write data from the transport sockets.  The handler thread pool is used to process 
incoming messages.  If the pool size is set to zero for a given thread pool type, the server level 
thread pool of the same type will be used for this virtual host.  See the “General Tuning 
Instructions” forum thread for up to date tuning suggestions for these settings. 

IdleWorkers – WorkerCount, CheckFrequency 

IdleWorkers/WorkerCount controls the number of threads being used to generate idle events.  
IdleWorkers/CheckFrequency is the time in milliseconds between checking to see if a client has 
been idle for Client/IdleFrequency.  The IdleWorkers/CheckFrequency should be at least four 
times smaller than the Client/IdleFrequency.  See the “General Tuning Instructions” forum 
thread for up to date tuning suggestions for these settings. 

NetConnections – ProcessorCount, IdleFrequency 

NetConnections/ProcessorCount is the number of threads used to service outgoing connections 
between Wowza Pro servers.  NetConnections/IdleFrequency is the time in milliseconds between 
NetConnection idle events.  See the “General Tuning Instructions” forum thread for up to date 
tuning suggestions for these settings. 

NetConnection/SocketConfiguration – ReuseAddress, ReceiveBufferSize, SendBufferSize and 
KeepAlive 

This section is the detailed configuration of the socket connections used between Wowza Pro 
servers.  See the “General Tuning Instructions” forum thread for up to date tuning suggestions 
for these settings. 

HTTPTunnel/KeepAliveTimeout 

This is the keep alive time for RTMPT, RTMPTE and RTMPS connections.  

Client - ClientTimeout, IdleFrequency 

Client/ClientTimeout is the time in milliseconds the server will wait before shutting down a non-
responding client connection.  Client/IdleFrequency is the time in milliseconds between idle 
events.  For basic video on demand streaming a value of 250 milliseconds will provide the best 
reliability versus performance ratio.  For live streaming a value of between 125 and 250 
milliseconds is more desirable.  It will increase the frequency at which media data is sent to the 
Flash client.  If you adjust this value, be sure to also adjust the IdleWorkers/IdleFrequency to a 
value that is at least four times smaller.  

RTP/ DatagramConfiguration – ReuseAddress, ReceiveBufferSize, TrafficClass and 
MulticastTimeout, [Unicast|Multicast][Incoming|Outgoing]/ProcessorCount 

This section is the detailed configuration of the UDP sockets connections used between Wowza 
Pro and RTP based encoders.  The ReceiveBufferSize is the two most important settings in this 
group.  It defines the size of the memory buffers used during data transfer over the socket 
connection.  See the “General Tuning Instructions” forum thread for up to date tuning 
suggestions for these settings. 

The ReuseAddress, TrafficClass and MulticastTimeout settings only provided for completeness. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
18 

http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/forums/showthread.php?t=1320
http://www.wowzamedia.com/forums/showthread.php?t=1320


U S E R ’ S  G U I D E  

The “ProcessorCount” values associated with “UnicastIncoming”, “UnicastOutgoing”, 
“MulticastIncoming” and “MulticastOutgoing” control the number of threads used to service 
UDP connections associated with RTP and MPEG-TS streaming.  These values are not used at 
this time and are here for future capabilities that will be added to future versions of the Wowza 
Pro software. 

Application/ApplicationTimeout 

The time in milliseconds the server will wait before shutting down an application to which no 
clients are connected. A value of zero will keep applications running until the virtual host is 
shutdown. 

Application/PingTimeout 

The RTMP protocol includes a connection ping mechanism.  This timeout is the maximum time 
in milliseconds Wowza Pro will wait for a ping response from a client. 

Application/ValidationFrequency 

If a connected Flash client has not sent data to the Wowza Pro server in the time defined by this 
property (in milliseconds), Wowza Pro will send an RTMP ping message to the client to make 
sure the client connection is still valid and listening. 

Application/MaximumPendingWriteBytes 

The maximum number of bytes that can be queued up to be sent to a client before the client is 
disconnected.  Set this value to zero to turn off this check.  The pending bytes queue is checked 
during the client validation process. 

Application/MaximumSetBufferTime 

The maximum number of milliseconds honored server side for client side call to 
NetStream.setBufferTime(secs).  Set this value to zero to turn off this check.  The default value is 
60000 (or 60 seconds).  This is to combat Replay Media Catcher which will set a very large client 
side buffer to trick the server into sending all the media data at once.  This can cause the server to 
consume a large amount of Java heap memory. 

Properties/Property – Name, Value 

Properties in the form of name value pairs can be attached to a virtual host definition. These 
properties are available in the server side API through the IVHost.getProperties() interface. 

Streams.xml 

The Streams.xml configuration file is used to define the server side stream types (server side 
NetStream implementations). Below is a description of each of the settings in the Streams.xml file. 

Stream – Name, Description, ClassBase, ClassPlay 

A stream definition consists of a “Name”, “Description”, “ClassBase”, “ClassPlay”. The “Name” 
element must be unique and is the identifier that is used to reference the stream type in the 
Application.xml file (described below) as well as from the Flash player client. The “Description” 
element is only used for debugging purposes.  The “ClassBase” and “ClassPlay” define the Java 
classes that are going to be instantiated to service this stream type. The concept of stream types is 
described below in the “Client Side Scripting” chapter of this document. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
19 



U S E R ’ S  G U I D E  

Properties/Property – Name, Value 

Properties in the form of name value pairs can be attached to each stream type definition. These 
properties are available in the server side API through the IStream.getProperties() interface. 

Note 

Wowza Pro includes three different methods for performing a seek operation on a media stream; 
“videoKeyFrame”, “audio” and “enhanced”.  The seek method is defined by the “seekTarget” 
property of the “default”, ‘record” and “file” stream types.  The “videoKeyFrame” method 
(which is the default) will seek to the closest key frame. The “audio” method will seek to the 
closest audio packet and will use the previous video key frame as the video to initially display and 
will begin video playback when it reaches the next video key frame.  The “enhanced” method 
(which only works with Flash player 9,0,0 or greater) will seek to closest frame and if needed will 
generate a key frame.  The “enhanced” method consumes the most system resources. 

MP3Tags.xml 

The MP3Tags.xml configuration file is used to define the property names that are used in the 
onId3(var info:Object) info object when playing an MP3 file.  Each of the ID3V2 tags that are 
embedded in an MP3 file is identified by a four character identifier (you can find a complete list of 
the standard identifiers at http://www.id3.org/).  This configuration file is used to map these four 
character identifiers to more meaningful names. 

MediaReaders.xml 

The MediaReaders.xml configuration file is used to define the Java classes that are used to read 
the media file formats such as Flash media, H.264/HE-AAC and MP3 files.  It can also be used 
to configure custom file extensions for any media type.   

MediaWriters.xml 

The MediaWriters.xml configuration file is used to define the Java classes that are used to write 
recorded flv files.  This configuration file provides a means for defining your own classes that will 
be invoked when media files are written by the server. 

RTP.xml 

The RTP.xml configuration file is used to define the Java classes that are used to translate raw 
RTP media packets into Flash media packets. 

Authentication.xml 

The Authentication.xml configuration file is used to define the Java classes and settings that are 
used to secure RTSP connections to the server.  By default there are three authentication 
methods: none (no authentication), basic (password and username are sent in clear text) and 
digest (password is hashed using MD5 and is never sent in clear text over the network).  
Usernames and passwords are stored in the file [install-dir]/conf/rtp.password.  The format of 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
20 

http://www.id3.org/


U S E R ’ S  G U I D E  

this file is a line per user with the username first followed by a space followed by the password.  
The authentication method (RTP/Authentication/Method) can be set for an entire virtual host in 
VHost.xml or on an application by application basis in Application.xml. 

MediaCasters.xml 

The MediaCasters.xml configuration file is used to define services that connect to other streaming 
servers to provide content for Wowza Media Server Pro.  An example of one such service is 
SHOUTcast.  This is also the configuration file used to configure the live stream repeater. 

log4j.properties 

The log4j.properties file is used to configure server logging. The server uses the Java based log4j 
logging system. By default the server is configured to log basic information to the console window 
and detail information in W3C Extended Common Log Format (ECLF) to log files. Detailed 
information on how to configure the logging system can be found in the “Logging” section of 
this chapter. 

Application.xml 

The Application.xml configuration file found at the root of the “conf” folder is the default 
application configuration file. The next section describes how application configuration works. 

Runtime Configuration 
The settings associated with the Java runtime environment, such as the command used to invoke 
Java and the maximum Java heap size, are controlled through a set of scripts and configuration 
files.  The location of these files differs depending on platform and the method used to invoke the 
server.  Below is a description of each of these files. 

bin\ setenv.bat  (Windows) 

The bin\setenv.bat is invoked when the server is started from the command line.  The most 
important settings in this file are: 

set _EXECJAVA=java  # Command used to invoke java 
set JAVA_OPTS="-Xmx768M" # Command line options for java command 

bin\WowzaMediaServerPro-Service.conf  (Windows) 

The bin\WowzaMediaServerPro-Service.conf is the configuration file used when the server is 
invoked as a Windows service.  The most important settings in this file are: 

wrapper.java.command=java # Command used to invoke java 
wrapper.java.initmemory=3 # Initial Java Heap Size (in MB) 
wrapper.java.maxmemory=768 # Maximum Java Heap Size (in MB) 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
21 



U S E R ’ S  G U I D E  

/Library/WowzaMediaServerPro/bin/setenv.sh  (Mac OS X) 

The bin/setenv.sh is invoked when the server is started in standalone and service mode.  The 
most important settings in this file are: 

_EXECJAVA=java  # Command used to invoke java 
JAVA_OPTS="-Xmx768M" # Command line options for java command 

/usr/local/WowzaMediaServerPro/bin/setenv.sh  (Linux) 

The bin/setenv.sh is invoked when the server is started in standalone mode.  The most important 
settings in this file are: 

_EXECJAVA=java  # Command used to invoke java 
JAVA_OPTS="-Xmx768M" # Command line options for java command 

/etc/WowzaMediaServerPro/WowzaMediaServerPro-Service.conf  (Linux) 

The /etc/WowzaMediaServerPro/WowzaMediaServerPro-Service.conf is the configuration file 
used when the server is invoked as a service.  The most important settings in this file are: 

_EXECJAVA=java  # Command used to invoke java 
JAVA_OPTS="-Xmx768M" # Command line options for java command 

Application Configuration 
Application configuration is done through an application configuration XML file. When a Flash 
client makes a request to the Wowza Pro server, the Wowza Pro server goes through the 
following procedure ([application] is the name of the application to which the client is 
connecting): 

1. Check for an application folder named “[install-dir]/applications/[application]”.  If this 
folder is present it will proceed to step 2.  If this folder is not present the connection will 
be terminated. 

2. Check for the application configuration file “[install-
dir]/conf/[application]/Application.xml”.   If this file is present it will load it and will not 
proceed to step 3.  If this file is not present it will proceed to step 3. 

3. Load the application configuration file “[install-dir]/conf/Application.xml”. 

Application.xml 

Below is a description of each of the settings in the Application.xml file. 

Application/ApplicationTimeout 

The time in milliseconds the server will wait before shutting down an application to which no 
clients are connected. A value of zero will keep applications running until the virtual host is 
shutdown.  If this value in not provided (section commented out) the value set in the VHost.xml 
will be used. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
22 



U S E R ’ S  G U I D E  

Connections/AutoAccept 

Possible values are “true” or “false”. This setting determines if the application will automatically 
accept incoming connection request.  If “true” all incoming connection request will automatically 
be accepted.  If “false” the application is required to make a server side call to “client. 
acceptConnection()” to accept an incoming connection request (see the “Creating a Custom 
Module” chapter for details). 

Connections/AllowDomains 

Connections/AllowDomains is a comma delimited list of domain names or ip address for which 
client connections will be accepted.  The domain names or ip addresses that are specified here 
represent the domain name or ip address of the Flash swf file that is connecting to the Wowza 
Pro server or the ip address of the client connecting to Wowza Pro.  If this value is left empty 
then connections from all domains or ip addresses are accepted.  For example if you have a .swf 
file that is located at the url: 

http://www.mycompany.com/flash/myflashmovie.swf 

To configure your server such that only content from your domain can access your Wowza Pro 
server you would set AllowDomains to www.mycompany.com.  You can also add an ip address 
(or ip address wildcard) to accept all connections from a particular ip address.  You might flilter 
based on ip address when you are working with a client side encoder such as On2 Flix Live which 
does not provide a valid referrer. 

You can use the wildcard “*” to match partial domain names or ip addresses.  For example if you 
would like to match all domain names that end with mycompany.com you would specify the 
domain name *.mycompany.com. 

The allow domains processing occurs just before the event method onConnect.  So if you would 
like to provide more fine grained access control to your server, you can override the onConnect 
event handler in a custom module and provide your own filtering mechanism.  

Streams/StreamType 

The name (as defined in the Streams.xml file) of the default stream type for this application.  An 
explanation of stream types can be found in the “Stream Types” section of “Client Side Scripting” 
chapter of this document. 

Streams/StorageDir and SharedObjects/StorageDir 

Streams/StorageDir is the full path to the directory where this application will read and write its 
stream files (.flv) to and from. SharedObjects/StorageDir is the full path to the directory where 
this application will read and write its remote stored object files to and from.  If these values are 
left blank, an application will use the following directories as its Streams/StorageDir and 
SharedObjects/StorageDir: 

 
%WMSCONFIG_HOME%/applications/[application]/streams/[appinstance] 
%WMSCONFIG_HOME%/applications/[application]/sharedobjects/[appinstance] 
 
%WMSCONFIG_HOME%  the value of the environment variable WMSCONFIG_HOME 
[application]   the name of the application 
[appinstance]   the name of the application instance 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
23 



U S E R ’ S  G U I D E  

There are several dynamic properties that can be used as part of the StorageDir path using the 
syntax ${[variable-name]}.  The following properties are available: 

${com.wowza.wms.AppHome}    - Application home directory 
${com.wowza.wms.ConfigHome}    - Configuration home directory 
${com.wowza.wms.context.VHost}   - Virtual host name 
${com.wowza.wms.context.VHostConfigHome}  - Virtual host config directory 
${com.wowza.wms.context.Application}   - Application name 
${com.wowza.wms.context.ApplicationInstance} - Application instance name 
 

For example the default Streams/StorageDir can be specified using the path: 

${com.wowza.wms.ConfigHome}/applications/${com.wowza.wms.context.Application}/ 
streams/${com.wowza.wms.context.ApplicationInstance} 

Streams/Properties 

Streams/Properties are property values that override values defined in [install-
dir]/conf/Streams.xml on a per-application basis.  For example, to turn on enhanced seek for any 
of the video on demand stream types, add the property “seekTarget” to this property collection 
and set the value to “enhanced”.  

Client/IdleFrequency 

Client/IdleFrequency is the time in milliseconds between idle events.  If this value is set to -1 then 
the value specified in VHost.xml will be used.  If a value other than -1 is specified it will override 
the value specified in VHost.xml for all clients connecting to the application defined by this 
Application.xml file.  See the VHost.xml description of this property for more information.  

Client/Access – StreamReadAccess, StreamWriteAccess, StreamAudioSampleAccess, 
StreamVideoSampleAccess, SharedObjectReadAccess and SharedObjectWriteAccess 

The Client/Access configuration parameters controls the default access a client connection has to 
assets connected to a particular Wowza Pro application.  An individual client’s access can be 
modified through the server side API.  This is most commonly done in the onConnect or 
onConnectAccept event handler.  Each of these settings is a comma delimited list of names that 
are matched against the asset name (stream name or shared object name) to control access.  If any 
part of the asset name matches one of the elements in the list match then the given access is 
granted. The values are case sensitive. If the parameter is empty (blank) then access is denied to all 
clients.  If the parameter is set to the “*” character, then access is granted to all clients.  For 
example if StreamReadAccess is set to “testa/testb;testc”, then the following stream name would 
be granted the following access: 

testc    Granted Access 
testc/test    Granted Access 
testC/test    Denied Access (incorrect case) 
testa/testb   Granted Access 
testa/testb123   Granted Access 
testa/testb/file123  Granted Access 
testa/test    Denied Access (incomplete match) 

StreamReadAccess: controls access to view or listen to a NetStream object.  

StreamWriteAccess: controls access to write or publish to a NetStream object. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
24 



U S E R ’ S  G U I D E  

StreamVideoSampleAccess: controls access to call BitmapData.draw() to take a snapshot of a 
NetStream object. 

StreamAudioSampleAccess: controls access to call SoundMixer.computeSpectrum() to grab the 
waveform data of a NetStream object. 

SharedObjectReadAccess: controls access to read values from a RemoteSharedObject. 

SharedObjectWriteAccess: controls access to write values to a RemoteSharedObject. 

RTP/Authentication/Method 

The authentication method used to secure RTSP connections to Wowza Pro.  Authentication 
methods are defined and configured in Authentication.xml.  By default there are three 
authentication methods: none (no authentication), basic (password and username are sent in clear 
text) and digest (password is hashed using MD5 and is never sent in clear text over the network).  
Usernames and passwords are stored in the file rtp.password.  The format of this file is a line per 
user with the username first followed by a space followed by the password.  The authentication 
method can also be set at the virtual host level in VHost.xml. 

RTP – AVSyncMethod, MaxRTCPWaitTime 

These two settings control how Wowza Pro synchronizes the audio and video channels when 
receiving a RTP stream. AVSyncMethod configures the methodology used to synchronize the 
audio and video channels.  There are three possible values; senderreport (use the Sender Report 
(SR) packets that are sent over the Real-time Control Protocol (RTCP) channel), rtptimecode 
(assume the RTP timecodes are absolute timecode values), systemclock (synchronize based on the 
system clock).  The default value is senderreport.  MaxRTCPWaitTime is the maximum time in 
milliseconds Wowza Pro will wait to receive a Sender Report (SR) packet over the Real-time 
Control Protocol (RTCP) channel.  If not SR packets are received within this time period the 
server will default to using the rtptimecode method.   

RTP/Properties 

RTP/Properties are property values that override values defined in [install-dir]/conf/RTP.xml on 
a per-application basis.  

MediaCaster/Properties 

MediaCaster/Properties are property values that override values defined in [install-
dir]/conf/MediaCasters.xml on a per-application basis.  For example, to set the stream time out 
value for any of the media caster types, add the property “streamTimeout” to this property 
collection and set it to a non-zero value.  

MediaReader/Properties 

MediaReader/Properties are property values that override values defined in [install-
dir]/conf/MediaReaders.xml on a per-application basis.  

Modules/Module – Name, Description and Class 

The modules section is a list of modules that are available to this application. The “Name” and 
“Description” elements are only for logging and debugging. The “Class” element is the full 
package name and class name of the module. Please see the “Server Side Modules” chapter of this 
document for information on configuring modules. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
25 



U S E R ’ S  G U I D E  

Properties/Property – Name, Value 

Properties in the form of name value pairs can be attached to an application definition. All 
application properties are copied to child application instances upon instance creation. These 
properties are available in the server side API through the IApplicationInstance.getProperties() 
interface. 

Logging 
Wowza Media Server Pro uses the apache.org log4j library as its logging implementation. The 
log4j logging system provides ample functionality for log formatting, log rolling and log retrieval 
for most applications. By default, Wowza Media Server Pro is configured to log basic information 
to the server console and detailed information in the W3C Extended Common Log Format 
(ECLF) to a log file.  The log files are written to the following folder: 

 
[install-dir]/logs 

Wowza Media Server Pro logging can generate the following logging fields: 

date Date of log event 
time Time of log event 
tz Time zone of log event 
x-event Log event (see table below) 
x-category Log event category (server, vhost, application, session, stream) 
x-severity Log event severity (DEBUG, INFO, WARN, ERROR, FATAL) 
x-status Status of log event (see table below) 
x-ctx Extra data about the context of the log event 
x-comment Extra comment about the log event 
x-vhost Name of the virtual host from which the event was generated 
x-app Name of the application from which the event was generated 
x-appinst Name of the application instance from which the event was generated 
x-duration Time in seconds that this event occurred within the lifetime of the  

x-category object 
s-ip IP address on which the server received this event 
s-port Port number on which the server received this event 
s-uri Full connection string on which the server received this event 
c-ip Client connection IP address 
c-proto Client connection protocol (rtmp, rtmpe, rtmpt(HTTP-1.1), 

rtmpte(HTTP-1.1), rtmps(HTTP-1.1)) 
c-referrer URL of the Flash movie that initiated the connection to the server 
c-user-agent Version of the Flash client that initiated the connection to the server 
c-client-id Client ID number assigned by the server to the connection 
cs-bytes Total number of bytes transferred from client to server (accumulative) 
sc-bytes Total number of bytes transferred from server to client (accumulative) 
x-stream-id Stream ID number assigned by server to the stream object 
x-spos Position in milliseconds within the media stream 
cs-stream-bytes Total number of bytes transferred from client to server for stream x-

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
26 



U S E R ’ S  G U I D E  

stream-id (accumulative) 
sc-stream-bytes Total number of bytes transferred from server to client for stream x-

stream-id (accumulative) 
x-sname Name of stream x-stream-id 
x-sname-query Query parameters of stream x-stream-id 
x-file-name Full file path of stream x-stream-id 
x-file-ext File extension of stream x-stream-id 
x-file-size File size in bytes of stream x-stream-id 
x-file-length File length in seconds of stream x-stream-id 
x-suri Full connection string for stream x-stream-id (including query 

parameters) 
x-suri-stem Full connection string for stream x-stream-id (excluding query 

parameters) 
x-suri-query Query parameter for connection string 
cs-uri-stem Full connection string for stream x-stream-id (excluding query 

parameters)  
cs-uri-query Query parameter for stream x-stream-id 
 

Wowza Media Server Pro generates the following logging events: 

comment Comment 
server-start Server start 
server-stop Server shutdown 
vhost-start Virtual host start 
vhost-stop Virtual host shutdown 
app-start Application instance start 
app-stop Application instance shutdown 
connect-pending Connection pending approval by application and license manager 
connect Connection result 
connect-burst Connection accepted in burst zone 
disconnect Client (session) disconnected from server 
play Play has started on a stream 
pause Play has paused on a stream 
unpause Play has unpaused on a stream 
seek Seek has occurred on a stream 
setstreamtype Client call to netConnection.call(“setStreamType”, null, “[streamtype]”); 
setbuffertime Client call to NetStream.setBufferTime(secs) logged in milliseconds 
stop Play has stopped on a stream 
create Media or data stream created 
destroy Media or data stream destroyed 
publish Start stream publishing 
unpublish Stop stream publishing 
record Start stream recording 
recordstop Stop stream recording 
announce RTSP Session Description Protocol (SDP) ANNOUNCE 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
27 



U S E R ’ S  G U I D E  

 

Wowza Media Server Pro generates the following logging status values: 

100 Pending or waiting (for approval) 
200 Success 
400 Bad request 
401 Rejected by application 
413 Rejected by license manager 
500 Internal error 
 

Wowza Media Server Pro logging is configured in the conf/log4j.properties properties file.  There 
are many logging configuration options made available by the log4j logging system.  The 
remainder of this section will cover the basic options for enabling and disabling different logging 
fields, events and categories.  Below is an example of a basic log4j.properties file for Wowza 
Media Server Pro. 

# create log appenders stdout and R 
log4j.rootCategory=INFO, stdout, R 
 
# Console appender 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=com.wowza.wms.logging.ECLFPatternLayout 
log4j.appender.stdout.layout.Fields=x-severity,x-category,x-event,x-ctx,x-comment 
log4j.appender.stdout.layout.OutputHeader=false 
log4j.appender.stdout.layout.QuoteFields=false 
log4j.appender.stdout.layout.Delimeter=space 
 
# Access appender 
log4j.appender.R=org.apache.log4j.DailyRollingFileAppender 
log4j.appender.R.DatePattern='.'yyyy-MM-dd 
log4j.appender.R.File=${com.wowza.wms.ConfigHome}/logs/wowzamediaserverpro_access.log 
log4j.appender.R.layout=com.wowza.wms.logging.ECLFPatternLayout 
log4j.appender.R.layout.Fields=x-severity,x-category,x-event;date,time,c-client-id,c-
ip,c-port,cs-bytes,sc-bytes,x-duration,x-sname,x-stream-id,sc-stream-bytes,cs-stream-
bytes,x-file-size,x-file-length,x-ctx,x-comment 
log4j.appender.R.layout.OutputHeader=true 
log4j.appender.R.layout.QuoteFields=false 
log4j.appender.R.layout.Delimeter=tab 

Note 

Always use forward slashes when referring to file paths (even on the Windows platform). 

In this example the logging properties file has been simplified to highlight a few key features.  The 
first statement in this file sets the logging level to “INFO” and defines two appenders; “stdout” 
and “R”.  Setting the logging level to “INFO” configures the logging mechanism such that it will 
only log events with a severity of “INFO” or greater.  The logging severity in ascending order are: 
DEBUG, INFO, WARN, ERROR and FATAL.  To log all events set the logging level to 
“DEBUG”.  Next, we configure each of the appenders.  The important properties in this section 
are: 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
28 



U S E R ’ S  G U I D E  

Field Comma delimited list of fields to log 
OutputHeader Boolean value (true/false) that instructs the logging system to write out a 

W3C Extended Common Log Format header each time the server is 
started. 

QuoteFields Boolean value (true/false) that instructs the logging system to surround 
all field data in double quotes 

Delimiter The delimiter character to use between field values. Valid values are 
“tab”, “space” or the actual delimiter character. 

CategoryInclude Comma separated list of logging categories. Only log events with the 
specified categories will be logged. 

CategoryExclude Comma separated list of logging categories. Only log events whose 
category is not in this list will be logged. 

EventInclude Comma separated list of logging events. Only log events with the 
specified event name will be logged. 

EventExclude Comma separated list of logging categories. Only log events whose event 
name is not in this list will be logged. 

 

These properties allow you to control the way the log information is formatted and filtered.  For 
more detailed information on how to configure the log4j specific properties such as log file rolling 
and additional log appender types visit the apache.org website at http://logging.apache.org/log4j. 

Wowza Pro can also be configured to generate logs on a per-virtual host and per-application 
basis.  These configurations are included but commented out at the bottom of the default [install-
dir]/conf/log4j.properties files.  The first commented out section includes configuration for per-
application logging.  The second commented out section includes configuration for per-virtual 
host logging.  To turn either of these features on, simply remove the comments (“#” sign at the 
beginning of each of the lines) from the section.  The per-virtual host logging will generate log 
files using the following directory structure: 

[install-dir]/logs/[vhost]/wowzamediaserverpro_access.log 
[install-dir]/logs/[vhost]/wowzamediaserverpro_error.log 
[install-dir]/logs/[vhost]/wowzamediaserverpro_stats.log 

The per-application logging will generate log files using the following directory structure: 

[install-dir]/logs/[vhost]/[application]/wowzamediaserverpro_access.log 
[install-dir]/logs/[vhost]/[application]/wowzamediaserverpro_error.log 
[install-dir]/logs/[vhost]/[application]/wowzamediaserverpro_stats.log 

This method of log file generation can be very useful if you plan on offering the Wowza Pro 
server as a shared service to several customers. 

Server Security 
The default installation of Wowza Media Server Pro on Linux and Mac OS X will install and run 
the server as the “root” user.  If you would like to run the server as a user other than root, you can 
follow these instructions to create a new user and configure the server to run as that new user.   

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
29 

http://logging.apache.org/log4j/docs/index.html


U S E R ’ S  G U I D E  

 

Note 

For security reasons, most Linux and Unix distributions do not allow user’s other than the root 
user to bind to port numbers less than 1024.  If you plan on running the Wowza Pro server on a 
lowered numbered ports such as 80 (the http port) or 443 (the https port), the server will need to 
continue to run as the root user. 

Linux 

First, we are going to create a new user and group named “wowza”. 

groupadd wowza 
useradd -g wowza wowza 
passwd wowza 

Next, we are going to change ownership and permissions on Wowza Media Server Pro 
installation files. 

chown wowza:wowza WowzaMediaServerPro 
chown –R wowza:wowza WowzaMediaServerPro-1.7.2 
chmod –R 775 WowzaMediaServerPro-1.7.2 
rm –f /var/run/WowzaMediaServerPro.pid 
rm –f /var/run/WowzaMediaServerPro.lock 

Finally, we are going to change the command that is used to start the server so that it is run as the 
new “wowza” user.  Change directory to the “/usr/local/WowzaMediaServerPro/bin” directory.  
Edit the standalone startup script “startup.sh” and prepend “sudo –u wowza” to the 24th line.  It 
should now be: 

sudo –u wowza $_EXECJAVA $JAVA_OPTS -Dcom.wowza.wms.AppHome= 
"$WMSAPP_HOME" -Dcom.wowza.wms.ConfigHome= 
"$WMSCONFIG_HOME" -cp  
$WMSAPP_HOME/bin/wms-bootstrap.jar  
com.wowza.wms.bootstrap.Bootstrap start 

You will also need to edit the service startup script “wms.sh” and make the same change to line 
24.  Now both the standalone startup script and the service startup script will start the server as 
the user “wowza”. 

If you have started Wowza Pro as a service running as root, then you will need to execute the 
following command to clear the run files: 

rm –rf /var/run/WowzaMediaServerPro* 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
30 



U S E R ’ S  G U I D E  

Mac OS X 

First, we are going to create a new user named “wowza”.  Open the “Accounts” systems 
preferences panel.  Unlock the add user functionality by clicking on the lock icon in the lower left 
hand corner of the panel (you will be asked to enter your administrative password).  Click the “+” 
button below the list of users to add a new user.  Enter the following values and click the “Create 
Account” button: 

Name:   wowza 
Short Name:  wowza 
Passord:  [enter a password] 
Verify:  [enter a password] 

Next, we are going to change the permissions on Wowza Media Server Pro installation files.  
Open a “Terminal” window and enter the following commands: 

cd /Library 
sudo chown wowza:admin WowzaMediaServerPro 
sudo chown –R wowza:admin WowzaMediaServerPro-1.7.2 

Finally, we are going to change the command that is used to start the server so that it is run as the 
new “wowza” user.  Change directory to the “/Library/WowzaMediaServerPro/bin” directory.  
Edit the standalone startup script “startup.sh” and prepend “sudo –u wowza” to the 24th line.  It 
should now be: 

sudo –u wowza $_EXECJAVA $JAVA_OPTS -Dcom.wowza.wms.AppHome= 
"$WMSAPP_HOME" -Dcom.wowza.wms.ConfigHome= 
"$WMSCONFIG_HOME" -cp  
$WMSAPP_HOME/bin/wms-bootstrap.jar  
com.wowza.wms.bootstrap.Bootstrap start 

Now when you start the server in standalone and service mode it will run as user “wowza”.  You 
can verify this by executing the “ps –ja” command in a “Terminal” window while the server is 
running. 

Note 

For more up to date security information visit the “Useful Code” section of the Wowza Media 
Systems Forums at http://www.wowzamedia.com/forums/. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
31 

http://www.wowzamedia.com/forums/


U S E R ’ S  G U I D E  

Chapter 

3 
Wowza Pro in Action 
How do I start streaming using Wowza Media Server Pro? 

owza Media Server Pro can be used to deliver streaming video to many user’s in a 
multiple server deployment.  Below we cover several topics as they relate to delivering 
video on demand and live content in such an environment. 
 W

H.264/HE-AAC Streaming with Non-Flash Encoders (RTSP/RTP/MPEG-TS) 
Wowza Media Server Pro supports the Real-Time Streaming Protocol (RTSP) and Real-time 
Transport Protocol (RTP) for incoming streaming of H.264/ HE-AAC content.  This enables the 
use of live encoders such as Telestream Wirecast and Apple QuickTime Broadcaster.  This 
section covers the basic Wowza Pro features as they relate to RTSP/RTP streaming.  For up to 
date, step by step instructions on how to setup and use Wowza Pro with live encoders, visit the 
Wowza Media Server Forums at http://www.wowzamedia.com/forums and choose the “Live 
Encoders” forum. 

Wowza Pro currently supports the following RTSP, RTP and MPEG-TS specifications: 

RTSP rfc2326 
RTP: H.264 rfc3984, QuickTime Generic RTP Payload Format 
RTP: AAC rfc3640, rfc3016, ISO/IEC 14496-3 
MPEG-TS ISO/IEC 13818-1 
MPEG-TS over RTP rfc2038 

 
There are two methods for delivering RTP based H.264/HE-AAC live content to Wowza Media 
Server Pro.  The most common method is to use an encoder that supports the QuickTime 
announce command.  Using this method the encoder creates a RTSP session with Wowza Pro 
and sends the Session Description Protocol (SDP) information using the announce command.  
The RTSP session is used to manage the RTP session startup and shutdown.  The second 
method is a native RTP based solution.  The SDP information is communicated to Wowza Pro 
either through the file system or an HTTP request.  The following two sections will cover these 
two methods. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
32 

http://www.wowzamedia.com/forums


U S E R ’ S  G U I D E  

Real-Time Streaming Protocol (RTSP) Streaming 

Wowza Media Server Pro natively supports the Real-Time Streaming Protocol (RTSP) for 
incoming streaming on H.264/HE-AAC content.  This capability is enabled on any port that is 
defined in VHost.xml.  Access to RTSP streaming is controlled through authentication.  Wowza 
Pro supports three methods of RTSP authentication; none (no authentication), basic (password 
and username are sent in clear text) and digest (password is hashed using MD5 and is never sent 
in clear text over the network).  Authentication configuration is done in VHost.xml, 
Application.xml and Authentication.xml.  The default authentication method is “digest” which is 
the strongest and most secure method.  Usernames and passwords are defined in the file  

“[install-dir]/conf/rtp.password”.  Before an RTSP session can be initiated a valid username and 
password must be added to the rtp.password file. 

An RTSP session is generally established based on four pieces of information; host address (and 
port), streaming path (sometimes called location), username and password.  The username and 
password information is discussed above.  The host name is the network address of the Wowza 
Pro server along with the network port.  By default RTSP communication takes place over port 
554 which is not a port on which Wowza Pro is listening.  Wowza Pro by default is listening on 
port 1935.  For this reason the host address should be set to [server-ip-address]:1935 where 
[server-ip-address] is the ip address of the server running Wowza Pro.   

The streaming path is a unique name given to the live stream.  In Wowza Pro this path is used to 
determine the application name, application instance name and stream name that are required for 
Flash streaming.  The format is as follows: 

[application]/[appinstance]/[streamname] 

Where [application] is the application name [appinstance] is the application instance name and 
[streamname] is the stream name.  The stream name can contain additional path elements.  For 
example a streaming path of: 

streamtest/myStream.sdp 

Would be interpreted as: 

[application] streamtest 
[appinstance] _definst_ 
[streamname] myStream.sdp 

A streaming path of: 

streamtest/_definst_/livevideos/myStream.sdp 

Would be interpreted as: 

[application] streamtest 
[appinstance] _definst_ 
[streamname] livevideos/myStream.sdp 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
33 



U S E R ’ S  G U I D E  

The actual video and audio data is transmitted to the Wowza Pro server in one of two ways; 4 
separate UDP ports or interleaved over the RTSP TCP connection.  Most encoders default to 
UDP transmission.  When using UDP transmission, the encoder and Wowza Pro will negotiate a 
set of ports to use for RTP transmission.  The UDP port range is 6970-9999.  It is important that 
these ports be open for UDP traffic on your firewall. 

Many of the RTSP/RTP encoders support a large list of video and audio codecs.  When using 
this method of live streaming, Wowza Pro only supports H.264/AVC1 (not MPEG4) for video 
content and HE-AAC for audio content.  It is important that you configure the encoder to 
encode the content using these codecs. 

You can record a stream coming from a RTSP based encoder by using the “live-record” stream 
type.  The file will be stored in the content folder that you have configured for your application.  
If you do not specify a stream prefix or you specify a prefix of “flv:” then the file will be recorded 
to an flv .  If you specify a stream prefix of “mp4:” the file will be written to an mp4 container 
format (also called the Quicktime file format). 

Native Real-time Transport Protocol (RTP) Streaming 

Wowza Pro can also be configured to receive an H.264/HE-AAC stream from a native RTP 
stream.  This method does not involve the use of a RTSP session.  Instead the stream is pulled on 
demand through the use of one of several special stream types.  The stream types that can be used 
to pull a native RTP stream are; rtp-live, rtp-live-record, rtp-live-lowlatency and rtp-live-record-
lowlatency.  When using this method, Wowza Pro supports both unicast UDP streams as well as 
multicast streams. 

The procedure for using this method is as follows (this assumes the application name “rtplive”): 

1. Create the folder “[install-dir]/applications/rtplive”. 

2. Create the folder “[install-dir]/conf/rtplive” and copy “[install-dir]/Application.xml” into 
this new folder. 

3. Edit the newly copied “Application.xml” file and change the “Streams/StreamType” to 
“rtp-live”. 

4. From the encoder generate a Session Description Protocol (SDP) file that describes the 
native stream (consult your encoders documentation for instructions on how to do this).  
For this example we assume the filename “myStream.sdp”. 

5. Copy the SDP file into the “[install-dir]/content” folder. 

6. Double click “[install-dir]/examples/NativeRTPVideoStreaming/client/live.html”, set 
“Server” to “rtmp://[server-ip-address]/rtplive” and “Stream” to “myStream.sdp” and 
click the “Play” button. 

It will take time for the video to be displayed for the first connection.  This is due to the fact that 
Wowza Pro must wait until the proper signal is transmitted that synchronizes the audio and video 
streams (the RTCP SR packet).  Wowza Pro must also wait until the first key frame is transmitted.  

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
34 



U S E R ’ S  G U I D E  

The video for subsequent connections to the server will be displayed much more quickly.  Wowza  
Pro will continue to receive this stream until the last client connection has disconnected.  At that 
time Wowza Pro will wait for a timeout period (defined by KeepAliveTime in MediaCasters.xml).  
If no new clients connect to this stream, the stream will be dropped and will not be restarted until 
another client requests the stream. 

Note 

The NativeRTPVideoStreaming example utilizes this method of streaming. 

Note 

The Session Description Protocol (SDP) information can also be made available to Wowza Pro 
through a URL.  Using this method the stream name is “[SDP URL]”.  For example if the SDP 
information is hosted at the web address:  

http://192.168.1.7/rtp/myStream.sdp 

Use the stream name: 

http://192.168.1.7/rtp/myStream.sdp 

Native RTP streaming uses an internal streaming mechanism called MediaCasters.  There are 
several MediaCaster properties that can be used to control how Wowza Pro monitors changes to 
the native RTP stream and the underlying SDP data (file or HTTP URL).  These properties are: 
streamTimeout, sdpFileCheckFreqency and sdpHTTPCheckFreqency.  By default each of these 
monitoring features are turned off (their values are set to zero).  MediaCaster property values can 
be set on an application by application basis in the “MediaCasters/Properties” section of the 
Application.xml file.  For example to set values for each of these properties, add the following 
XML snippet to the conf/rtplive/Application.xml file: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
35 

http://192.168.1.7/rtp/myStream.sdp


U S E R ’ S  G U I D E  

<MediaCaster> 
 <Properties> 
  <Property> 
   <Name>streamTimeout</Name> 
   <Value>15000</Value> 
   <Type>Integer</Type> 
  </Property> 
  <Property> 
   <Name>sdpFileCheckFreqency</Name> 
   <Value>2000</Value> 
   <Type>Integer</Type> 
  </Property> 
  <Property> 
   <Name>sdpHTTPCheckFreqency</Name> 
   <Value>10000</Value> 
   <Type>Integer</Type> 
  </Property> 
 </Properties> 
</MediaCaster> 

Each of these settings are described below: 

streamTimeout 

The streamTimeout property is measured in milliseconds.  When set to a value greater than zero, 
Wowza Pro will monitor the incoming native RTP streams. If it does not see any audio or video 
packets for the duration set by this value it will force a reset of the native RTP stream. 

sdpFileCheckFreqency 

The sdpFileCheckFreqency property is measured in milliseconds.  This value controls how often 
Wowza Pro will check for file modification date and file size changes to the SDP file that was 
used to start the native RTP stream.  When a file modification date or file size change is detected, 
the stream will be reset and the SDP file will be re-read. 

sdpHTTPCheckFreqency 

The sdpHTTPCheckFreqency property is measured in milliseconds.  This value controls how 
often Wowza Pro will check for changes to SDP data retrieved using an HTTP URL.  When a 
SDP data change is detected, the stream will be reset and the new SDP data will be used to start 
the native RTP stream. 

You can record a stream coming from a native RTP based encoder by using the “rtp-live-record” 
or “rtp-live-record-lowlatency” stream type.  The file will be stored in the content folder that you 
have configured for your application.  If you do not specify a stream prefix or you specify a prefix 
of “flv:” then the file will be recorded to an flv container.  If you specify a stream prefix of “mp4:” 
the file will be written to an mp4 container format (also called the Quicktime file format). 

If you would like to have more control over when the stream starts and stops and how it gets 
recorded, you can use the MediaCasterStreamManager AddOn package.  This package includes a 
simple Flash client that connects to Wowza Pro and is used to start and stop native RTP streams.  
See this forum post for more information: 

http://www.wowzamedia.com/forums/showthread.php?t=4533 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
36 

http://www.wowzamedia.com/forums/showthread.php?t=4533


U S E R ’ S  G U I D E  

MPEG Transport Stream Streaming 

The Wowza Pro Unlimited with MPEG-TS edition can also be configured to receive an 
H.264/HE-AAC stream from an MPEG Transport Stream (MPEG-TS) encoder.  This method 
does not involve the use of a RTSP session.  Instead the stream is pulled on demand through the 
use of one of several special stream types.  The stream types that can be used to pull a native RTP 
stream are; rtp-live and rtp-live-lowlatency.  When using this method, Wowza Pro supports both 
unicast UDP streams as well as multicast streams. 

The procedure for using this method is as follows (this assumes the application name “rtplive”): 

7. Create the folder “[install-dir]/applications/rtplive”. 

8. Create the folder “[install-dir]/conf/rtplive” and copy “[install-dir]/Application.xml” into 
this new folder. 

9. Edit the newly copied “Application.xml” file and change the “Streams/StreamType” to 
“rtp-live”. 

10. Configure the encoder to send the MPEG-TS stream to the server running Wowza Pro 
(unicast) or to a multicast address that is properly routed to the server running Wowza 
Pro. 

11. Double click “[install-dir]/examples/NativeRTPVideoStreaming/client/live.html”, set 
“Server” to “rtmp://[server-ip-address]/rtplive” and “Stream” to “udp://[ip-
address]:[port]” (where [ip-address] is the ip address of the destination of the MPEG-TS 
stream and [port] is the UDP port) and click the “Play” button. 

It will take time for the video to be displayed for the first connection.  This is due to the fact that 
Wowza Pro must wait for a video key frame before it can send the incoming stream to the Flash 
player.  The video for subsequent connections to the server will be displayed much more quickly.  
Wowza  Pro will continue to receive this stream until the last client connection has disconnected.  
At that time Wowza Pro will wait for a timeout period (defined by KeepAliveTime in 
MediaCasters.xml).  If no new clients connect to this stream, the stream will be dropped and will 
not be restarted until another client requests the stream. 

You can record a stream coming from a MPEG-TS based encoder by using the “rtp-live-record” 
or “rtp-live-record-lowlatency” stream type.  The file will be stored in the content folder that you 
have configured for your application.  If you do not specify a stream prefix or you specify a prefix 
of “flv:” then the file will be recorded to an flv container.  If you specify a stream prefix of “mp4:” 
the file will be written to an mp4 container format (also called the Quicktime file format). 

Note 

MPEG Transport Stream Streaming requires the Wowza Pro Unlimited with MPEG-TS edition 
license. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
37 



U S E R ’ S  G U I D E  

If you would like to have more control over when the stream starts and stops and how it gets 
recorded, you can use the MediaCasterStreamManager AddOn package.  This package includes a 
simple Flash client that connects to Wowza Pro and is used to start and stop native RTP streams.  
See this forum post for more information: 

http://www.wowzamedia.com/forums/showthread.php?t=4533 

Load Balancing 
Wowza Media Systems provides a load balancing system that you can add to the Wowza Media 
Server Pro.  To obtain the latest version of this package visit the following Wowza Pro forum 
thread: 

http://www.wowzamedia.com/forums/showthread.php?t=4637 

Multiple Server Live Streaming (Live Stream Repeater) 
The following example illustrates a suggested configuration and implementation for delivering a 
live media event across multiple Wowza Media Server Pro servers.  We will walk through the 
configuration and deployment of the live stream repeater.  The live stream repeater uses multiple 
Wowza Pro servers in an origin and edge configuration to deliver live media content across 
multiple servers.  The encoded media content will be delivered to the origin server in the same 
manner as if you were delivering the content to a single Wowza Pro server.  The Flash client code 
will request the content from an edge server using a special stream type and content name that 
will instruct the edge server to source the live stream from the origin server.  Orgin and edge 
configuration is an application level configuration.  A single Wowza Pro instance can be 
configured as an origin for one application and an edge for another.  

For this example we will setup a single origin server using the application name “liverepeater”.  
Here are the steps to configure the origin server: 

1. Create a folder named [install-dir]/applications/liverepeater. 

2. Create a folder named [install-dir]/conf/liverepeater and copy the file [install-
dir]/conf/Application.xml into this new folder. 

3. Edit the newly copied Application.xml file and change the Streams/StreamType to 
“liverepeater-origin” 

Next, configure each of the edge servers as follows: 

1. Create a folder named [install-dir]/applications/liverepeater. 

2. Create a folder named [install-dir]/conf/liverepeater and copy the file [install-
dir]/conf/Application.xml into this new folder. 

3. Edit the newly copied Application.xml file and change the Streams/StreamType to 
“liverepeater-edge” (you can use the “liverepeater-edge-lowlatency stream type if low 
latency is important, this will add extra load to the server). Uncomment the 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
38 

http://www.wowzamedia.com/forums/showthread.php?t=4533
http://www.wowzamedia.com/forums/showthread.php?t=4637


U S E R ’ S  G U I D E  

Repeater/OriginURL section and set OriginURL to rtmp url of the orgin server.  For 
example if the origin server uses the domain name origin.mycompany.com, this value 
should be set to: 

<Repeater> 
<OriginURL>rtmp://origin.mycompany.com</OriginURL> 
<QueryString></QueryString> 

</Repeater> 

For this example let’s assume the origin server uses the domain name origin.mycompany.com and 
that there are 3 edge servers with the domain names edge1.mycompany.com, 
edge2.mycompany.com, edge3.mycompany.com.  Let’s also assume that we are going to use the 
stream name “mycoolevent”.  From your media encoder you are going to publish content to the 
stream name “mycoolevent” using the following connection string: 

rtmp://origin.mycompany.com/liverepeater 

From your Flash client code you are going to play the content using the following connection 
string: 

rtmp://edge1.mycompany.com/liverepeater 

To play the content you will use the following play command: 

netStream.play(“mycoolevent”); 

To provide load balancing between the edge servers you can use the load balancing system 
referenced in the “Load Balancing” section. 

It is possible to configure more than one origin server to provide a hot backup in case the main 
origin server goes down.  Let’s say the failover origin server has the domain name 
origin2.mycompany.com.  Assuming it is configured in the same manner as the main origin 
server, you would set the following Repeater/OriginURL in each the edge’s Applications.xml 
files: 

<Repeater> 
<OriginURL>rtmp://origin.mycompany.com|rtmp://origin2.mycompany.com</OriginURL> 
<QueryString></QueryString> 

</Repeater> 

Basically it’s the two connection urls concatenated together with the pipe “|” character.  The edge 
servers will first try to connect to the first origin server, if this fails they will attempt to connect to 
the second origin server. 

Also on the edge servers in “[install-dir]/conf/liverepeater/Application.xml” you will need to 
configure the MediaCaster property “streamTimeout”.  This property will instruct Wowza Pro to 
monitor the stream on the origin.  If there is a break in the stream longer than the stream timeout, 
then the edge will connect to the next origin in the origin list.  The configuration looks like this: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
39 



U S E R ’ S  G U I D E  

<MediaCaster> 
 <Properties> 
  <Property> 
   <Name>streamTimeout</Name> 
   <Value>15000</Value> 
   <Type>Integer</Type> 
  </Property> 
 </Properties> 
</MediaCaster> 

 

Note 

You can override the OriginURL value defined in each edge server’s Application.xml file by 
specifying the origin as part of the stream name.  The stream name in this case would take the 
form: liverepeater:rtmp://origin.mycompany.com/liveorigin/mycoolevent. 

Note 

The “Media Security” AddOn Package describes how to secure the connection between the 
origin and edge machines using SecureToken and SecureURLParams. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
40 



U S E R ’ S  G U I D E  

Chapter 

4 
Server Management Console 
and Monitoring 
How do I manage and monitor Wowza Media Server Pro? 

owza Media Server Pro can be managed and monitored through a Java Management 
Extensions (JMX) interface.  JMX is a standards based technology for exposing 
components of a Java application through a unified object interface.  This interface can 

then be consumed by open source and commercial monitoring tools such as HP OpenView, 
OpenNMS (http://www.opennms.org), JConsole and VisualVM (http://visualvm.dev.java.net). 

 W

Note 

Most Java Runtime Environment (JRE or JVM) vendors require that you install the full Java 
Development Kit (JDK) to get the JConsole management and monitoring application.  Please 
consult your vendor’s documentation. 

Note 

A good place to learn more about the Java Management Extension (JMX) standard is from the 
Sun website (http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/). 

Local Management Using JConsole 
Wowza Media Server Pro exposes a rich set of objects for monitoring the server.  The Java virtual 
machine also exposes a set of JMX objects that can be used to monitor the virtual machine.  The 
easiest way to view these objects is by using the JConsole applet that ships with the Java 
Development Kit (JDK) of most popular VMs.  This tool is usually located in the bin folder of 
your Java JDK installation.  By default the startup.bat and startup.sh are configured to expose the 
JMX object interface to a locally running copy of JConsole.  To view the JMX interface, first start 
the Wowza Pro server (either by running it as a service or standalone from a command prompt). 
Next, run JConsole.  In JConsole you should see a list of the currently running Java virtual 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
41 

http://www.opennms.org/
http://visualvm.dev.java.net/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/


U S E R ’ S  G U I D E  

machines that are exposing a JMX interface.  Wowza Media Server Pro will be listed as 
“com.wowza.wms.bootstrap.Bootstrap start”.  Select this item and click the “Connect” button. 

Note 

On Windows, for security reasons, local monitoring and management is only supported if your 
default Windows temporary directory is on a file system that supports setting permissions on files 
and directories (for example, on an NTFS file system). It is not supported on a FAT file system 
that provide insufficient access controls.  The workaround is to setup remote monitoring.  See the 
“Remote Management” section below, to learn how to configure the remote JMX interface.   

From here you can explore the different tab panels that are part of JConsole.  Wowza Media 
Server Pro management objects are located under the “MBean” tab in the 
“WowzaMediaServerPro” group.  The JMX objects are organized based on the configured virtual 
hosts, applications and applications instances.  Monitoring objects will be created and deleted on 
the fly as applications, application instances, client connections and streams are created and 
deleted from the server. 

Remote JMX Interface Configuration 
By default the startup and service scripts are configured to only expose the JMX interface to a 
locally running monitoring application.  You can also configure a remote JMX interface for 
monitoring the Wowza Pro server from a remote computer.  Both the JMV and the Wowza Pro 
server include remote JMX interfaces.  It is only necessary to configure one of these remote 
interfaces to enable remote monitoring.  It is suggested that you use the Wowza Pro remote 
interface since it is more easily configured and can be properly exposed through hardware or 
software based firewalls.  The following two sections describe the configuration process. 

Wowza Pro built-in JMX interface configuration 

The remote JMX interface built into the Wowza Pro server can be configured through the 
“JMXRemoteConfiguration” and “AdminInterface” sections of the “conf/Server.xml” file.  
These sections contains the following settings: 

JMXRemoteConfiguration - Enable, IpAddress, RMIServerHostName, RMIConnectionPort, 
RMIRegistryPort 

The “Enable” setting is a boolean value that can either be “true” or “false” and is the main switch 
to turn on and off the remote JMX interface.  The default value is “false”.  Setting this value to 
“true” (with no further modifications to the other settings), will turn on the remote JMX interface 
with authentication.  The default username/password is admin/admin and the URL for 
invocation in JConsole or VisualVM is: 

service:jmx:rmi://localhost:8084/jndi/rmi://localhost:8085/jmxrmi 

The “IpAddress” and “RMIServerHostName” work together to properly expose the JMX 
interface to the network.  In general “IpAddress” should be set to the internal ip address of the 
server running Wowza Pro and “RMIServerHostName” should be set to the external ip address 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
42 



U S E R ’ S  G U I D E  

or domain name of the machine.  For example, if the server running Wowza Pro is behind a 
network translated ip address (NAT) such that the internal ip address of the server is 192.168.1.7 
and the external ip address is 40.128.7.4, the two settings should be as follows: 

<IpAddress>192.168.1.7</IpAddress> 
<RMIServerHostName>40.128.7.4</RMIServerHostName> 

With this configuration you would use the following URL to connect to the JMX interface: 

service:jmx:rmi://40.128.7.4:8084/jndi/rmi://40.128.7.4:8085/jmxrmi 

The “RMIConnectionPort” and “RMIRegistryPort” settings control the TCP ports used to 
expose the RMI connection and RMI registry interfaces.  These values only need to be changed if 
the Wowza Pro server reports port conflicts upon startup.  The default values for these settings 
are 8084 and 8085 respectively.  The “RMIConnectionPort” corresponds to the first port number 
in the connection url and the “RMIRegistryPort” to the second. 

The “IpAddress”, “RMIConnectionPort” and “RMIRegistryPort” effect the connection url in the 
following way: 

service:jmx:rmi://[ RMIServerHostName]:[RMIConnectionPort]/jndi/rmi://[ RMIServerHostName]:[RMIRegistryPort]/jmxrmi 

If the remote JMX interface is enabled, the Wowza Pro server upon startup will log the URL of 
the currently configured JMX interface.  This is probably the most reliable way to determine the 
JMX url to use to connect to the server. 

To enable remote JMX monitoring through software or hardware based firewalls, open TCP 
communication for the two ports defined by the “RMIConnectionPort” and “RMIRegistryPort” 
settings. 

JMXRemoteConfiguration - Authenticate, PasswordFile, AccessFile 

The “Authenticate” setting is a boolean value that can either be “true” or “false” and is the main 
switch to turn on and off remote JMX interface authentication.  The “PasswordFile” and 
“AccessFile” settings are the full path to the JMX password and access files. 

The password file is a text file with one line per user.  Each line contains a username followed by a 
space followed by a password.  The access file contains one line per user.  Each line contains a 
username followed one of two access permission identifiers; “readwrite” or “readonly”.  A sample 
password file “jmxremote.password” and sample access file “jmxremote.access” can be found in 
the conf directory of the installation.  These files define three named users: 

admin (password admin)   – access readwrite 
monitorRole (password admin)  - access readonly 
controlRol (password admin) - access readwrite 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
43 



U S E R ’ S  G U I D E  

 

Note 

Some Java Runtime Environments require that both the password and access files have read only 
privileges.  On Linux, this can be achieved by setting the permissions on the both files to 600. 
 
chmod 600 conf/jmxremote.access 
chmod 600 conf/jmxremote.password 

JMXRemoteConfiguration - SSLSecure 

The “SSLSecure” setting is a boolean value that can either be “true” or “false” and is the switch to 
turn on and off remote JMX interface over SSL.  SSL configuration can get quite involved.  The 
following online documentation describes the process for enabling SSL with JMX: 
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html#gdemv. 

AdminInterface/ObjectList 

The “AdminInterface/ObjectList” setting is a comma separated list of object types that you wish 
to expose through the JMX interface.  This list can contain any number of the following items: 

Server   - Server level connection and performance info and notifications 
VHost   - Information about currently running virtual hosts 
VHostItem  - Details of currently configured virtual hosts 
Application  - Application level connection and performance info 
ApplicationInstance - Application Instance level connection and connection info 
Module   - Details of currently loaded modules 
MediaCaster  - Details of media caster objects (ie, live stream repeater) 
Client   - Details of each connected Flash session 
MediaStream  - Details of each individual server side NetStream object 
SharedObject  - Details of currently loaded shared objects 
Acceptor  - Details of currently running host ports or TCP ports 
IdleWorker  - Details of currently running idle workers 

Exposing “Client”, “MediaStream” and/or “SharedObject” information can add significant load 
to the server and to the JMX interface.  You will most likely want to turn off this level of detail for 
deployed solutions. 

JVM built-in JMX interface configuration 

The remote JMX interface built into the Java Virtual Machine can be configured through the 
Wowza Pro start scripts.  The following scripts in the “bin” folder can be edited to enable remote 
JMX monitoring 

 
startup.bat     – Windows standalone startup script 
WowzaMediaServerPro-Service.conf  - Windows service config script 
startup.sh    - Linux/Mac OS X standalone startup  
                                   script 
wms.sh     - Linux/Mac OS X service startup script 
 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
44 

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html%23gdemv


U S E R ’ S  G U I D E  

Each of these scripts contain commented out configuration parameters that can be used to 
configure the remote interface.  A detailed description of the process for configuring the remote 
interface can be found at http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html. 

Below are the settings that are used to configure remote connections. 

-Djava.rmi.server.hostname=192.168.1.7 
-Dcom.sun.management.jmxremote.port=1099 
-Dcom.sun.management.jmxremote.ssl=false 
-Dcom.sun.management.jmxremote.authenticate=true 
-Dcom.sun.management.jmxremote.password.file=jmxremote.password 
-Dcom.sun.management.jmxremote.access.file=jmxremote.access 

-Dcom.sun.management.jmxremote.port=[port-number] 

The remote port that the JMX service will listen on for remote connections.  Be sure to open up 
this port on any firewalls between the server and the remote client. 

-Dcom.sun.management.jmxremote.ssl=[true,false] 

Boolean value that turns on and off remote SSL connections.  Default is true.  If set to true you 
must properly install and configure server side digital certificates.  A detailed description of the 
procedure for installing and configuring digital certificates can be found at: 
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#SSL_enabled.   

-Dcom.sun.management.jmxremote.authenticate=[true,false] 
-Dcom.sun.management.jmxremote.password.file=[path-to-password-file] 
-Dcom.sun.management.jmxremote.access.file=[path-to-access-file] 

These three settings control remote JMX authentication.  To turn off authentication set 
com.sun.management.jmxremote.authenticate to false.  To enable authentication set 
com.sun.management.jmxremote.authenticate to true and configure the password and access files 
as defined below. 

The password file is a text file with one line per user.  Each line contains a username followed by a 
space followed by a password.  The access file contains one line per user.  Each line contains a 
username followed one of two access permission identifiers; “readwrite” or “readonly”.  A sample 
password file “jmxremote.password” and sample access file “jmxremote.access” can be found in 
the conf directory of the installation.  These files define three named users: 

admin (password admin)   – access readwrite 
monitorRole (password admin)  - access readonly 
controlRol (password admin) - access readwrite 

Before configuring your server for authentication, you will want to change the default usernames 
and passwords. 

Many virtual machines require that these files have read-only file permissions.  On Windows the 
file must be located outside the C:\Program File folder and the file permissions can be set using 
the cacls command.  To setup authentication on Windows, do the following: 

1. Create a folder at the root of your C: drive named “WowzaMediaServerProJMX”. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
45 

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html


U S E R ’ S  G U I D E  

2. Copy the [install-dir]/conf/jmxremote.access and [install-dir]/conf/jmxremote.password 
into this new folder. 

3. Open a DOS command shell, change directory to C:\WowzaMediaServerProJMX, and 
run the following cacls command on the two files: 

 
cacls jmxremote.password /P [username]:R 
cacls jmxremote.access /P [username]:R 
 
Where [username] is the user running the java process or service. 

4. Update the jmxremote settings to reflect the new location: 

-Dcom.sun.management.jmxremote.password.file=C:\WowzaMediaServerProJMX\jmxremote.password 
-Dcom.sun.management.jmxremote.access.file=C:\WowzaMediaServerProJMX\jmxremote.access 

On Linux and Mac OS X there is no need to move the files from their default location.  Simply 
change the file permissions using chmod.  Below is an example: 

chmod 600 jmxremote.password 
chmod 600 jmxremote.access 
 

-Djava.rmi.server.hostname=[hostname/ip-address] 

Server host name or ip address.  This setting is often required if the server either has multiple ip 
addresses or if the hostname for the server resolves to different ip address based on how the 
server is being accessed (inside and outside a firewall or router space). 

Note 

When running Wowza Media Server Pro as a Windows service, the JMX interface will not be 
available unless the service is running as a named user.  To configure the service to run as a 
named user, go to “Settings>Control Panel>Administrative Tools>Services” and right click on 
the “Wowza Media Server Pro” service and select “Properties”.  Next, click on the “Log On” tab, 
change the “Log on as” radio to “This account” and enter a user name and password for a local 
user. 

Remote Management 

Remote Management Using JConsole 

JConsole can also be used to monitor a remote Wowza Pro server.  Once you configured the 
remote JMX interface as described above, run JConsole.  Enter the remote JMX interface URL 
into the “Remote Process” field.  The default remote JMX interface URL for the Wowza Pro 
built-in JMX interface is: 

service:jmx:rmi://localhost:8084/jndi/rmi://localhost:8085/jmxrmi 

The default remote JMX interface URL for the JVM built-in JMX interface is: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
46 



U S E R ’ S  G U I D E  

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi 

Finally, enter your user name and password into the provided fields and click the “Connect” 
button.  You should now be connected to the remote server and able to view the JMX hierarchy. 

Remote Management Using VisualVM 

Another great tool for monitoring Wowza Pro over JMX is VisualVM.  VisualVM can be 
downloaded from the following location: 

http://visualvm.dev.java.net 

Once you get it installed and running, it is best to install the MBean plugin.  To do this select the 
“Plugins” command from the “Tools” menu.  In the “Available Plugins” tab put a check mark 
next to the “VisualVM-MBean” plugin and click the “Install” button.  Once you get this plugin 
installed it will provide similar information to JConsole.  You can select “Add JMX Connection” 
from the “File” menu to add your Wowza Pro server to the “Applications” list. 

Object Overview 
This section describes the more important top level objects that can be used to monitor the 
server’s performance and uptime.  This section will not cover each and every object that is 
exposed by the server.  These objects are available under the “WowzaMediaServerPro” object in 
the MBean section of JConsole and VisualVM. 

Server 

The server object contains information about when the server was started and how long it has 
been running. 

VHosts 

The VHosts collection includes information on each of the running virtual hosts.  From here you 
get access to each of the running applications and applications instances.  At each level of the 
hierarchy (Server, VHost, Application, ApplicationInstance) you can get detailed information on 
number of connections (Connections object) and the input/output performance (IOPerformance 
object). 

IOPerformance 

The Server exposes IOPerformance objects at many different levels of the object hierarchy.  
These objects can be used to monitor server performance and throughput at that section of the 
server.  For example the IOPerformance object under a particular VHost will display the 
throughput of that particular virtual host. 

Connections 

The Server exposes Connections objects at many different levels of the object hierarchy.  These 
objects can be used to monitor client connections to that section of the server.  For example the 
Connections object under a particular Application object will display the current clients connected 
to that particular Application. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
47 

http://visualvm.dev.java.net/


U S E R ’ S  G U I D E  

VHost/[vHostName] - HandlerThreadPool, TransportThreadPool 

The HandlerThreadPool and TransportThreadPool objects expose information about each of the 
worker thread pools that are owned by each of the virtual hosts.  You can use this object to 
monitor thread usage and load. 

ServerNotifications 

The ServerNotifications object publishes notification events pertaining to the connection limits 
and connection bursting capabilities of the Wowza Pro server.  The Wowza Pro server can 
generate the following notification events: 

com.wowza.wms.connect.WarningServerLicenseLimit - connection accepted in  
  bursting zone (warning) 

com.wowza.wms.connect.ErrorServerLicenseLimit  - connection refused due 
          due to license limit 
com.wowza.wms.connect.WarningVHostLimit   - connection refused due 
          to virtual host limit 

The body of the JMX notification message is a string with information about the virtual host, 
application, application instance, client id, ip address and referrer that generated the event.  
Notification events can be viewed in JConsole by navigating to the “MBean” tab, opening the 
“WowzaMediaServerPro” group and selecting the “ServerNotification” object.  Next, select the 
“Notifications” tab and click the “Subscribe” button.  All events will display as new rows in the 
“Notifications” list.  Only events that occur after you subscribe to the notifications will be 
displayed. 

Custom HTTP Interfaces (HTTPProvider) 
Wowza Media Server Pro includes the ability to add custom HTTP interfaces to the server.  
These interfaces are called HTTPProviders.  By default Wowza Media Server Pro is configured to 
use the “com.wowza.wms.http.HTTPServerVersion” HTTPProvider which returns the current 
Wowza Pro version and build number.  You can see this in action by opening a web browser and 
entering the address: 

http://[server-ip-address]:1935 

Where [server-ip-address] is the ip address of the server running Wowza Pro.  The server will 
respond with: “Wowza Media Server Pro [edition] [version] build[build-number]”.  This HTTP 
interface is customizable through the VHost.xml file.  See the above description of the VHost.xml 
for more information. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
48 



U S E R ’ S  G U I D E  

Chapter 

5 
Client Side Scripting 
How do I interact with Wowza Media Server Pro from the Flash player 
client? 

owza Media Server Pro fully supports the Flash player API. Most of this interface as it 
relates to Wowza Pro is encapsulated by three Flash player objects: NetConnection, 
NetStream and SharedObject. This section will highlight where Wowza Media Server 

Pro implementation of this object interface differs or has been extended. 

 W
Stream Types 
One of the major differences between Wowza Media Server Pro and the Adobe Flash Media 
Interactive Server is the way Wowza Media Server Pro handles the NetStream object on the 
server. Wowza Media Server Pro provides a mechanism for defining custom server side 
NetStream implementations or stream types.  These stream types are Java classes that are 
dynamically bound to the server at run time.  A stream type is made available to the server by 
defining an entry in the Streams.xml file described in the “Server Administration” chapter of this 
document.  A stream type is uniquely identified by the value of its “Name” element.   

Wowza Media Server Pro ships with several different stream types each coded and tuned to only 
support a narrow set of functionality.  For instance the “file” stream type is only able to stream a 
dynamic playlist of static “.flv” content from the server to client.  If your application attempted to 
use the “file” stream type to support video chat it would not function properly. 

Wowza Media Server Pro provides several examples that highlight the usage of the different 
stream types; “Simple Video Streaming”, “Video Recording” and “Video Chat”.  These examples 
clearly illustrate how to develop your application to use the provided stream types.  The Wowza 
Pro stream types are: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
49 



U S E R ’ S  G U I D E  

 

Stream Type Use 
file, default Video on demand streaming of static Flash media, H.264/ 

HE-AAC and MP3 content 
record Video recording 
live Publish and play live video content (best for one-to-many 

streaming of live events) 
live-lowlatency Publish and play live video content (best for one-to-one or 

one-to-few video/audio chat applications) 
live-record Same as live in addition content will be recorded 
live-record-lowlatency Same as live-lowlatency in addition content will be recorded 
shoutcast Audio re-streaming of a SHOUTcast/Icecast MP3 or AAC+ 

audio stream 
shoutcast-record Same as shoutcast in addition content will be recorded 
liverepeater-origin  Publish and play live video content across multiple Wowza 

Media Server Pro servers in an origin/edge configuration (use 
to configure origin application) 

liverepeater-edge Publish and play live video content across multiple Wowza 
Media Server Pro servers in an origin/edge configuration (use 
to configure edge application) 

liverepeater-edge-lowlatency Publish and play live video content across multiple Wowza 
Media Server Pro servers in an origin/edge configuration (use 
to configure edge application when latency is important) 

rtp-live  
 

Play native RTP streams (see: H.264 Streaming with Non-
Flash Encoders (RTSP/RTP/MPEG-TS)). 

rtp-live-lowlatency Play native RTP streams (see: H.264 Streaming with Non-
Flash Encoders (RTSP/RTP/MPEG-TS) when latency is 
important) 

rtp-live-record Same as rtp-live in addition content will be recorded 
rtp-live-record-lowlatency Same as rtp-live-lowlatency in addition content will be 

recorded 
 

Below is a short description of how the NetStream.play and NetStream.publish client side API 
calls are used in conjunction with each the stream types. 

file, default 

The “file” stream type is used to stream a single file or dynamic playlist of static flash video 
content (.flv), H.264/ HE-AAC content (.f4v, .mp4, .m4a, .mov, .mp4v, .3gp, and .3g2) or MP3 
audio content (.mp3) to the Flash player client.  The single file or playlist is specified by making 
calls from the client to NetStream.play. 

play(name, [, start [, len [, reset]]]); 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
50 



U S E R ’ S  G U I D E  

name The name of content to play and/or add to the dynamic playlist. The server will locate the 
file on the file system based on the definition of the “Streams/StorageDir” setting in your 
application’s Application.xml file (described in the “Server Administration” chapter).   

Wowza Media Server Pro can play H.264/ HE-AAC and MP3 files as well as flash video files.  To 
play a H.264/ HE-AAC file, prepend the “mp4:” qualifier to the media name (include the file 
extension). For example to play the file “mycoolvideo.m4v”, specify the stream name “mp4: 
mycoolvideo.m4v”.  To play an MP3 file, prepend the “mp3:” qualifier to the media name. For 
example to play the MP3 file “mycoolsong.mp3”, specify the name “mp3:mycoolsong”.  If you 
just want the server to return the MP3 ID3 tags and not play the media file, prepend the qualifier 
“id3:”.   

start The time in seconds from the beginning of the media file to start playback. A value less 
than or equal to zero will start play at the beginning of the media file.  The default value is 0. 

len The duration of playback for this media file in the playlist in seconds.  A value less than 
zero will play the media file from value defined by start through the end of the media file.  A value 
of 0 will just send the closest key frame to “start” (great for displaying media thumbnails).  A value 
greater than zero will play the media for the duration of “len” seconds.  The default value is -1. 

reset A boolean value (true or false) which indicates if the previous playlist entries should be 
deleted before this entry is added.  If true the current playlist associated with this NetStream 
object will be cleared and this entry will be added to the beginning of the playlist and start playing.  
If false this entry will be added to the end of the playlist.  The default value is true. 

For example, to stream a single .flv file with the name “mycoolvideo.flv” the command would be: 

var ns:NetStream; 
ns.play(“mycoolvideo”); 

To play the H.264/ HE-AAC movie “mycoolvideo.m4v” the command would be: 

var ns:NetStream; 
ns.play(“mp4:mycoolvideo.m4v”); 

To build a dynamic playlist that first plays the video “mycoolvideo1” starting 20 seconds into the 
video for 60 seconds then switching to “mycoolvideo2” and playing that file from the beginning 
to the end would be: 

var ns:NetStream; 
ns.play(“mycoolvideo1”, 20, 60, true); 
ns.play(“mycoolvideo2”, 0, -1, false); 

Playback can be controlled and monitored through client side calls to the NetStream object API. 

To see this stream type in action, check out the “FastPlayVideoStreaming” and 
“SimpleVideoStreaming” examples. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
51 



U S E R ’ S  G U I D E  

record 

The “record” stream type is used to capture video content from the Flash player client’s 
“Camera” and “Microphone” objects to an “.flv” file on the server.  Recording is controlled 
through client side calls to NetStream.publish. 

publish(name [, howToPublish]); 

name The name of flash video file to record to on the server. This name should not include the 
“.flv” extension.  The server will locate the file on the file system based on the definition of the 
“Streams/StorageDir” setting in your application’s Application.xml file (described in the “Server 
Administration” chapter).  A value of “null” will stop recording, flush the remaining video 
content to the “.flv” file, close the file and send the “NetStream.Unpublish.Success” event to the 
onStatus handler of the NetStream object. 

howToPublish The method for publishing to the “.flv” file.  A value of “record” will cause the 
server to overwrite the previously existing “.flv” file with the same name.  A value of “append” 
will append the video content. 

Recording can be controlled and monitored through client side calls to the NetStream object API. 

To see this stream type in action, check out the “VideoRecording” example. 

live 

The “live” stream type is used to publish and play live video content captured by the Flash player 
client’s “Camera” and “Microphone” objects or from a digital video encoder.  This stream type is 
tuned for delivering live media events that do not required a low latency connection.  The “live-
lowlatency” or “chat” stream types are better suited for video and audio chat applications.   

Video and audio capture is controlled through client side calls to NetStream.publish and playback 
is controlled through calls to NetStream.play. 

publish(name); 

name The unique name for the published live stream.  A value of “null” will stop publishing the 
live stream. 

play(name, [, start [, len [, reset]]]); 

name The name of the live stream to play. 

To see this stream type in action, check out the “LiveVideoStreaming” example. 

live-lowlatency  

These stream types are variants of the “live” stream type that are tuned for video and audio chat 
applications.  They are invoked in the same manner as the “live” stream type. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
52 



U S E R ’ S  G U I D E  

To see this stream type in action, check out the “VideoChat” example. 

live-record, live-record-lowlatency 

The “live-record” and “live-record-lowlatency” stream types are variants of the “live” and “live-
lowlatency” stream types that provide media recording capabilities.  Video and audio capture is 
controlled through client side calls to NetStream.publish and playback is controlled through calls 
to NetStream.play. 

publish(name [, howToPublish]); 

name The unique name for the published live stream.  A value of “null” will stop publishing the 
live stream. 

howToPublish The method for publishing to the “.flv” file.  A value of “record” will cause the 
server to overwrite the previously existing “.flv” file with the same name.  A value of “append” 
will append the video content. 

Recording can be controlled and monitored through client side calls to the NetStream object API. 

play(name, [, start [, len [, reset]]]); 

name The name of the live stream to play. 

Media can be recorded to two different container formats; flv and mp4.  The container format is 
controlled by the stream name prefix. If the stream name prefix is “flv:” or not specified then the 
media will be recorded to an flv container.  If the stream prefix is “mp4:” content will be recorded 
to a mp4 container (also called the Quicktime file format).  The mp4 container can only contain 
H.264, AAC and MP3 media formats.  All other formats such as NellyMoser, Sorenson Spark 
and VP6 will be omitted when recording to an mp4 container. 

shoutcast, shoutcast-record 

The “shoutcast” and “shoutcast-record” stream types are used to re-stream a SHOUTcast (or 
Icecast) stream through the Wowza Pro server as an MP3 or AAC+ stream (“shoutcast-record” 
in addition to re-streaming the SHOUTcast stream will record it to a file).  This stream type uses 
the Wowza Media Server Pro’s MediaCaster technology to maintain a connection to the 
SHOUTcast server.  This system will maintain a single connection per unique SHOUTcast url.  
What this means is if 10 client connections are listening to the same SHOUTcast stream, the 
server will only maintain a single connection to the source SHOUTcast server. 

Playback is controlled through client side calls to the NetStream object API.  For example if you 
wanted to play the SHOUTcast url http://192.168.1.5/reggae the NetStream play call would be: 

play(“http://192.168.1.5/reggae”); 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
53 



U S E R ’ S  G U I D E  

 

Note 

The urls that are needed to connect to a SHOUTcast or Icecast server are the urls that are 
contained within the .pls (SHOUTcast) or .m3u (Icecast) playlist files.  Most websites that publish 
SHOUTcast or Icecast streams present links on their sites that refer to these .pls and .m3u files.  
So to use the SHOUTcast stream type you must first download these playlist files to your local 
machine, open the files with a text editor and use the links found inside to connect to their 
published streams. 

This stream type will trigger two NetStream event handlers based on the metadata included as 
part of the SHOUTcast stream: onHeaderData and onMetaData.  Each of these event handlers 
will receive a single parameter which is an object that contains the metadata for that event.  The 
onHeaderData event handler will be triggered once at start of audio streaming.  The onMetaData 
handler will be triggered when the metadata information for the stream (such as song title, artist 
or album) changes during the streaming session.  See this stream type in action, try out the 
“SHOUTcast” example. 

liverepeater-origin, liverepeater-edge, liverepeater-edge-lowlatency  

These stream types are used by the live stream repeater.  Consult the “Scalability for Live 
Streaming” section of the “Server Administration” chapter for more details. 

Creating a NetStream object in Wowza Media Server Pro 

There are two methods for specifying the stream type to use when creating a NetStream object in 
the Flash player client.  First, the “Stream/StreamType” entry in your application’s 
Application.xml defines the default stream to use each time a NetStream object is created from 
the player client.  This value can be overridden in the Flash player client by making a remote call 
to “setStreamType” before creating a NetStream object in your application’s client code. Below is 
an example: 

var nc:NetConnection; 
var ns:NetStream; 
 
nc = new NetConnection(); 
nc.onStatus = function(infoObj) 
{ 
 if (infoObj.code == "NetConnection.Connect.Success") 
 { 
  nc.call("setStreamType", null, "live"); 
  ns = new NetStream(nc); 
 } 
} 
nc.connect("rtmp://wms.mycompany.com/myapplication/myinstance"); 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
54 



U S E R ’ S  G U I D E  

Client to Server Calls 
Wowza Media Server Pro supports the same method as the Adobe Flash Media Server for 
making client to server side calls.  From the Flash player client the NetStream.call method can be 
used to directly call server side methods.  The signature for NetStream.call is as follows: 

ActionScript 2: 
 
call(handlerName [, resultObj [, param1 … param(n)]]); 
 
ActionScript 3: 
 
call(handlerName , responder [, param1 … param(n)]); 
 

handlerName The name of the method on the server side that will be executed by this client 
side call. 

resultObj (AS2) A reference to a result object that contains an onResult function that will be 
called when the server side call has completed.  The default value is “null”. 

responder (AS3) An ActionScript3 Responder object that will receive the result of the function 
call.  Set this value to null if the function does not return data. 

param1 … param(n) Optional parameters that are passed to the server side method. 

Below is an ActionScript 3 code snippet that illustrates how to call the server side method 
“doSomething” and to print out the resulting return value in the onResult handler. 

var nc:NetConnection; 
 
function doSomethingResult(returnObj) 
{ 
 var param:String; 
 for(param in returnObj) 
  trace("return: "+param+"="+ returnObj[param]); 
} 
 
 
ncOnStatus = function(infoObj) 
{ 
 if (infoObj.code == "NetConnection.Connect.Success") 
 { 
  nc.call("doSomething", new Responder(doSomethingResult), "test param1"); 
 } 
} 
 
nc = new NetConnection(); 
nc.addEventListener(NetStatusEvent.NET_STATUS, ncOnStatus); 
nc.connect("rtmp://wms.mycompany.com/myapplication/myinstance"); 

The “Creating a Custom Module” chapter of this document will document how to create server 
side methods in Java. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
55 



U S E R ’ S  G U I D E  

Content Protection (SecureToken, SecureURLParams…) 
One of the main advantages that streaming media content has over progressive download is 
content protection and security.  Simply streaming your content using the Flash client and Wowza 
Media Server Pro does not always provide sufficient security against products that are built to 
intercept streaming media.  The Wowza Pro server includes several features and add on packages 
to help protect against content interception: RTMPE and RTMPTE, the AllowDomains setting 
in Application.xml, the “Media Security” package (which includes SecureToken and 
SecureURLParams), the “Stream Name Alias” package and the onConnect method handler.  The 
next section describes each of these methods of content protection. 

RTMPE and RTMPTE 

RTMPE and RTMPTE are encrypted versions of the RTMP and RTMPT protocols.  These 
protocols provide 128-bit encrypted channel between the Flash player and the Wowza Pro server.  
Encryption keys are per-session.  RTMPE and RTMPTE provide strong protection against media 
ripping software. 

AllowDomains 

The “Connections/AllowDomains” setting in the Application.xml file is a comma delimited list 
of domain names or ip address for which client connections will be accepted.  The domain names 
or ip addresses that are specified here represent the domain name or ip address of the Flash swf 
file that is connecting to the Wowza Pro server or the ip address of the client connecting to 
Wowza Pro.  See the “Application Configuration” section of the “Server Administration” chapter 
for more details. 

This setting will refuse server connections from Flash players that are not hosted in your domain 
or at a specific ip address.  So if another website tries to link to content served by your Wowza 
Pro server, the connection will be refused and closed.  This method is very straight forward to 
implement but only provides a medium level of security.  This method does not block 
applications such as “Replay Media Catcher” which will act (or spoof) as if the request is being 
initiated from your website.  The “SecureToken” example, discussed below, provides a higher 
level of security against the spoofing threat. 

Note 

To temporarily turn off AllowDomains for development of your Wowza Pro solution, add the 
following property definition to the JAVA_OPTS variable defined in [install-dir]/bin/setenv.sh 
(or setenv.bat  on Windows): -Dcom.wowza.wms.AllowDomains.enable=false. 

Media Security Package (SecureToken and SecureURLParams) 

The “Media Security” package is an add on package that includes both the SecureToken and 
SecureURLParams security systems.  This package can be downloaded from the following forum 
post: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
56 



U S E R ’ S  G U I D E  

http://www.wowzamedia.com/forums/showthread.php?t=1281 

Here is a brief description of each of these technologies.  For more indepth information consult 
the documentation that accompanies the “Media Security” package. 

SecureToken 

SecureToken is a challenge and response based security system that provides a high level of 
content protection against spoofing threats like those posed by the “Replay Media Catcher”.  
Each connection is protected by a random single use key and a password (shared secret).  The 
basic security methodology is described below. 

The way SecureToken works is that upon client connection the provided custom module 
generates a unique key for the pending connection.  The generated key is encrypted using the 
TEA (Tiny Encryption Algorithm) algorithm using a password (shared secret) that is shared 
between the Wowza Pro server and your Flash client movie.  The encrypted unique key is 
returned as the “secureToken” parameter of the object that is the first parameter to the event 
callback NetConnection.onStatus.  The Flash client movie then decrypts the unique key using the 
shared password and sends the result back to the custom module by calling 
NetConnection.call(“secureTokenResponse”, null, decodedKey).  The server then compares this 
key to the originally generated key.  If they match then processing for that connection continues.  
If the values do not match then the connection is aborted.  If the Flash client movie tries to create 
a NetStream object without first calling “secureTokenResponse” with the correctly decoded key, 
then the connection is aborted. 

SecureURLParams 

SecureURLParams is a simple method for providing password like protection to the connection 
process between the Flash player client and Wowza Pro.  This security measure is generally used 
to protect the publishing process.  In most cases it is used along side SecureToken.  
SecureURLParams is used to protect publishing and SecureToken is used to protect playback. 

With SecureURLParams you define name value pair combinations that are assigned to protect 
one of three server functions: connect, play or publish.  The name value pairs are passed to 
Wowza Pro as part of the rtmp connection url (works with all variants of rtmp such as rtmpe). 

Stream Name Alias Package 

The “Stream Name Alias” package is a simple and powerful system for masking and protecting 
complex URL based stream names.  It can also be used to control which stream names are 
accepted by the server side implementation of NetStream.play and NetStream.publish.  This 
package can be downloaded from the following forum post: 

http://www.wowzamedia.com/forums/showthread.php?t=1505 

onConnect Method Handler 

The third method for securing content is to devise your own custom security system using the 
Wowza Media Server Pro server side API.  Using the Java API you can easily extend the server to 
provide your own custom authentication system to protect your content.  The following two 
chapters describe in detail how the custom module system works.  The onConnect method is an 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
57 

http://www.wowzamedia.com/forums/showthread.php?t=1281
http://www.wowzamedia.com/forums/showthread.php?t=1505


U S E R ’ S  G U I D E  

event handler that is called each time a client attempts to make a connection to the Wowza Pro 
server.  This is a great place to integrate a secure authentication system.  The Java environment 
also provides the built in services and classes to do database authentication and cryptography. 

Note 

For more up to date security information or examples of how to secure other open source Flash 
Media players such as the JW Media Player, see the “Useful Code” section of the Wowza Media 
Systems Forums at http://www.wowzamedia.com/forums/. 

AddOn Packages 
Wowza Media Server Pro provides a very open and dynamic server side API that is covered in 
detail in the next chapter.  Many Wowza Pro features, such as several of the security features 
discussed above, are provided as “AddOn Packages”.  To see a list of “AddOn Packages”, visit 
the following page on the Wowza Pro web site: 

http://www.wowzamedia.com/packages.html 

This page will be updated as “AddOn Packages” are made available or are updated. 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
58 

http://www.wowzamedia.com/forums/
http://www.wowzamedia.com/packages.html


U S E R ’ S  G U I D E  

Chapter 

6 
Server Side Modules 
What is a server side module and what server side functionality ships with 
Wowza Media Server Pro? 

erver side functionality in Wowza Media Server Pro is encapsulated in a set of modules.  At 
runtime these modules are dynamically bound to a given application based on the 
configuration information specified in an application’s Application.xml file.  Wowza Media 

Server Pro ships with five server side modules: ModuleCore, ModuleProperties, 
ModuleClientLogging, ModuleFastPlay and ModuleFLVPlayback.  This chapter provides a brief 
introduction to modules and module configuration.  It also describes in detail each of the five 
modules that ship with the server.  The next chapter “Creating a Custom Module” will discuss 
how to extend the server’s functionality by creating your own custom server side modules. 

S 

Server Side Module Defined 
A server side module in Wowza Media Server Pro is a Java Archive (jar) file that is dynamically 
linked into the server at runtime.  The jar file can contain multiple classes and resources needed to 
implement a set of functionality.  The four included modules are linked into the wms-server.jar 
file that is loaded at application startup.  A module is added to an application by adding an entry 
to the Modules section of the application’s Application.xml file. Below is an example of an 
application that loads the ModuleCore module. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
59 



U S E R ’ S  G U I D E  

<Root> 
 <Application> 
  <Connections> 
   <AutoAccept>true</AutoAccept> 
  </Connections> 
  <Streams> 
   <StreamType>file</StreamType> 
   <StorageDir></StorageDir> 
  </Streams> 
  <SharedObjects> 
   <StorageDir></StorageDir> 
  </SharedObjects> 
  <Modules> 
   <Module> 
    <Name>core</Name> 
    <Description>Core Module</Description> 
    <Class>com.wowza.wms.module.ModuleCore</Class> 
   </Module> 
  </Modules> 
 </Application> 
</Root> 

Included Modules 
Wowza Media Server Pro ships with four modules.  Each module is described below: 

ModuleCore – (com.wowza.module.ModuleCore) 

The ModuleCore module represents the server side implementation of the NetConnection, 
NetStream and SharedObject objects.  It is required that this module be included by all 
applications for the server to operate properly.  This module contains several additional server 
side methods that are highlighted here: 

setStreamType(streamType:String); 
getStreamType(); 

Returns and sets the default stream type for this client connection. 

getClientID(); 

Returns the client ID for this client connection. 

getVersion(); 

Returns the server name and version. 

getLastStreamId(); 

Returns the ID number of the last NetStream object that was created by this client. 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
60 



U S E R ’ S  G U I D E  

ModuleProperties - (com.wowza.module.ModuleProperties) 

The ModuleProperties module gives the Flash player client code access to application specific 
properties (name, value pairs) that are attached to the objects in the server object hierarchy. 

setApplicationProperty(name:String, value:String); 
getApplicationProperty(name:String); 

Returns and sets properties attached to this client’s Application object. 

setAppInstanceProperty(name:String, value:String); 
getAppInstanceProperty(name:String); 

Returns and sets properties attached to this client’s Application Instance object. 

setClientProperty(name:String, value:String); 
getClientProperty(name:String); 

Returns and sets properties attached to this client’s object. 

setStreamProperty(streamId:Number, value:String); 
getStreamProperty(streamId:Number); 

Returns and sets properties attached to a NetStream object.  NetStream objects are identified by 
StreamId which can be returned to the client by making a call to getLastStreamId() directly 
following a call to “new NetStream(nc)”. 

ModuleClientLogging - (com.wowza.module.ModuleClientLogging) 

The ModuleClientLogging module enables client side logging to the server. 

logDebug(logStr:String); 
logInfo(logStr:String); 
logWarn(logStr:String); 
logError(logStr:String); 

The following call from the Flash player client: 

nc.call("logDebug", null, "log this string"); 

Is the same as a server side call to: 

getLogger().debug("log this string"); 

ModuleFastPlay - (com.wowza.module.ModuleFastPlay) 

The ModuleFastPlay enables fast forward, fast rewind and slow motion play back of static flash 
video.  Fast play is configured by making a call to netStream.call(“setFastPlay”, null, multiplier, 
fps, direction) before each call to netStream.play, netStream.pause(false), netStream.seek. To turn 
off fast play simply make a call to netStream.play, netStream.pause(false), netStream.seek without 
first making a call to “setFastPlay”. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
61 



U S E R ’ S  G U I D E  

setFastPlay(multiplier:Number, fps:Number, direction: Number); 

multiplier  the speed at which to play the movie. To play a movie at 4x normal speed, set this 
value to 4.0.  To play a movie in slow motion, set this value to a value less than one.  For example 
to playback at quarter speed, set this value to 0.25. 

fps  the frames per second for the resultant video stream. During fast play the server 
will discard video frames as needed to try to maintain this frame rate.  For slow motion 
(multipliers less than 1) this value is ignored. 

Note 

Fast play does not work properly with H.264/HE-AAC content. 

Note 

Remember that Flash video is made up of a series of key-frames and progressive-frames (D and P 
frames). During the fast play process the server is going to throw out mostly progressive-frames 
in favor of key-frames. Key-frames tend to be much larger than progressive-frame. Because of 
this you will want to specify a frames-per-second rate that is significantly lower than the movie’s 
frame rate to maintain a reasonable bandwidth. So for a movie that normally plays at 30 fps a 
setting of 10fps is about right for fast play. 

direction  the direction of play. A value of 1 for forward and -1 for reverse. 

During fast play the time value returned by NetStream.time needs to be shifted and scaled to 
reflect the current playback position in the movie.  Each time fast play is initiated the NetStream 
object receives an onStatus(statusObj) event. Wowza Media Server Pro has extended the 
statusObj to include information about the current fast play settings. The following properties 
have been added to the statusObj: 

isFastPlay boolean that is true if fast play is on and false if not. 

fastPlayMultiplier the multiplier specified in the call to setFastPlay. 

fastPlayDirection the direction specified in the call to setFastPlay 

fastPlayOffset the offset used to calculate the true location in the video stream. 

With this information you can calculate the current playback position by executing the following 
calculation: 

var inc:Number; 
var time:Number; 
 
inc = ((NetStream.time*1000)-fastPlayOffset)*fastPlayMultiplier; 
time = (fastPlayOffset + (fastPlayDirection>0?inc:-inc))/1000; 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
62 



U S E R ’ S  G U I D E  

 

Note 

The example “FastPlayVideoStreaming” in the examples folder is a great starting point for 
discovering how to use fast play. 

Note 

When using the “file” or “default” stream type, fast play is not supported when a media playlist 
contains more than one entry.  

ModuleFLVPlayback - (com.wowza.module.ModuleFLVPlayback) 

The ModuleFLVPlayback module is required by the FLVPlayback component.  This module 
must be added to any application that is going to use the FLVPlayback component. 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
63 



U S E R ’ S  G U I D E  

Creating a Custom Module 
What is a Wowza Media Server Pro Custom Module? 

his chapter describes in detail how custom server side modules work.  A server side 
module is a Java Archive (jar) file that encapsulates a set of functionality that is dynamically 
linked into the server at runtime.  All modules must be compiled and built using a Java 

Development Kit (JDK) version 5 (aka 1.5) or greater.  Wowza Media Systems provides an 
Eclipse based integrated development environment called the Wowza IDE that automates much 
of the process of creating a server side module.  

Getting Started 
The first tool you need for Java development is a Java Development Kit (JDK) version 5 (aka 1.5) 
or greater.  This kit can be obtained from the Sun website at 
http://java.sun.com/javase/downloads.   Next, you will need the Wowza IDE.  The Wowza 
IDE can be downloaded from the Wowza Labs page at 
http://www.wowzamedia.com/labs.html.  The “Creating a Wowza Media Server Pro Module” 
chapter of the Wowza IDE: User’s Guide is a great starting point for learning how to create your 
first server side module. 

Note 

Before you read the rest of this chapter it might be a good idea to browse Wowza Media Server 
Pro javadocs to get a feel for the server side API.  These Java docs can be opened from the 
“Start” menu by selecting “Wowza Media Server Pro>Documentation>Server Side API”. 

Note 

Debug logging is useful during module development to debug module and method loading issues.  
To turn on debug logging, edit your conf/log4j.properties file and change the log level (in the first 
configuration property) from “INFO” to “DEBUG”. 

Chapter 

7 
 T

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
64 

http://java.sun.com/javase/downloads/index.jsp
http://www.wowzamedia.com/labs.html


U S E R ’ S  G U I D E  

Module Basics 
A server side module is Java Archive or jar file that contains a set of classes.  These classes are 
dynamically loaded at runtime based on settings in Wowza Media Server Pro’s configuration files.    
A module (or jar file) is made available to the server by placing it in the “[install-dir]/lib” directory  
of the Wowza Pro server. 

A single module or jar file can expose multiple module classes.  A module class is a public class 
that extends the com.wowza.wms.module.ModuleBase abstract class.  A new module class 
instance is created for each application instance that is started by the server.  So if you define a 
module for the application “myapplication” and two clients connect to the server with the 
following connection strings: 

rtmp://localhost/myapplication/instance1 
rtmp://localhost/myapplication/instance2 

Two instances of your module class will be instantiated.  One for each application instance.  All 
class level properties will be unique to each application instance. 

The public methods defined for a module class define the classes interface to the player client.  
There are three types of public methods that are callable by the server and/or the Flash player 
client: event methods (onApp, onConnect and onStream), custom methods and the onCall 
method.  Each is described below: 

Event Methods (onApp, onConnect and onStream) 

Event methods are invoked by the server based on events that occur during server processing.  
There are three sets of event methods; onApp, onConnection and onStream.  Each of these sets 
are represented by an interface class in the server side API; IModuleOnApp, IModuleOnConnect 
and IModuleOnStream.  All event methods defined in all modules are invoked when an event 
occurs.  What this means is that if two modules implement the onAppStart event method, then 
both modules onAppStart methods will be invoked when a new application instance is created.  
Module methods are invoked starting at the bottom of the <Modules> list defined in 
Application.xml.  So the last <Modules> entry in the list will be called first and it will work its way 
up to the first item in the list. 

IModuleOnApp 
public abstract void onAppStart(IApplicationInstance appInstance); 
public abstract void onAppStop(IApplicationInstance appInstance);  
 
onAppStart: Invoked when an application instance is started 
onAppStop: Invoked when an application instance is stopped 

IModuleOnConnect 
public abstract void onConnect(IClient client,  

RequestFunction function, AMFDataList params); 
public abstract void onDisconnect(IClient client); 
public abstract void onConnectAccept(IClient client); 
public abstract void onConnectReject(IClient client);  
 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
65 



U S E R ’ S  G U I D E  

onConnect oked when a Flash player connects to an application instance : Inv
onDisconnected: Invoked when a Flash player disconnect from an application instance  
onConnectAccept: Invoked when a Flash player connection is accepted 
onConnectReject: Invoked when a Flash player connection is refused 

IModuleOnStream 
public abstract void onStreamCreate(IMediaStream stream); 
public abstract void onStreamDestroy(IMediaStream stream);  
 
onStreamCreate  Invoked when a new IMediaStream object is created :
onStreamDestroy: Invoked when a IMediaStream object is closed 

Note 

The onStreamCreate event method is invoked before “play” or “publish” has been called for this 
IMediaStream object.  For this reason the IMediaStream object does not have a name.  See the 
IMediaStreamActionNotify2 interface to implement a server listener that is invoked when actions 
occur on this IMediaStream object. 

To implement one of these interfaces, you can either use the Java “implements” keyword 
followed by a comma delimited list of interfaces that you wish to implement or you can simply 
use the interface definitions as a reference for your method signatures and define them in your 
class as public methods.  Below is a sample class that implements the IModuleOnApp methods. 

package com.mycompany.module; 
 
import com.wowza.wms.module.*; 
import com.wowza.wms.client.*; 
import com.wowza.wms.amf.*; 
import com.wowza.wms.request.*; 
 
public class MyModule extends ModuleBase implements IModuleOnApp 
{ 

public void onAppStart(IApplicationInstance appInstance) 
{ 
 getLogger().info(“onAppStart”); 
} 
 
public void onAppStop(IApplicationInstance appInstance) 
{ 
 getLogger().info(“onAppStop”); 
}  

} 
 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
66 



U S E R ’ S  G U I D E  

 

Note 

Use the IModuleOnConnect interface to authenticate client connections.  To setup authentication 
edit your application’s Application.xml file and set Connections/AutoAccept to false.  Next, in 
your applications server side module implement the IModuleOnConnect interface.  Finally, in the 
onConnect event method you can validate the client connection by inspecting any extra 
parameters sent to the server from the client as part of the call to NetConnection.connect().  To 
accept/reject the client connection call client. acceptConnection() or client.rejectConnection(). 

Custom Methods 

Custom methods are server side Java methods that you want to expose to the Flash player client 
through calls to the NetConnection.call() or are call that are part of the NetConnection or 
NetStream command set.  For example “play” and “publish” are defined in ModuleCore as 
custom methods.  These methods must be public and must have the following argument 
signature (IClient, RequestFunction, AMFDataList params).  Only public methods with this 
signature will be available to be called from the client.   

Processing for custom methods is different than that of event methods.  When a given method 
such as “play” is invoked from the Flash player only the last module in the <Modules> list that 
defines that custom method will be invoked.  For example the ModuleCore module defines the 
method “play” which is invoked when NetStream.play(streamName) is called from the Flash 
player.  If you create your own custom module that defines the method “play” and add it to the 
<Modules> list after the ModuleCore module, then your “play” method will be invoked rather 
than the “play” method defined in ModuleCore.  If in your implementation of “play” you wish to 
invoke the “play” method of the next module up the list that precedes your module, you can call 
“this.invokePrevious(client, function, params)”.  Wowza Pro will search up the module list and 
find the next module that implements the “play” method and it will invoke that method in that 
module.  This provides a means to create an adhoc stack of methods.  Each implementation of a 
method in the <Modules> list can perform an operation based on the invocation of a given 
method and can choose to pass control to the next module that implement that method above 
them in the <Modules> list.   

For example if in your implementation of “play” you wish to check the stream name of any calls 
made to NetStream.play(streamName).  If the stream name starts with “goodstream/” you wish 
to append the phrase “_good” to the stream name and call “this.invokePrevious(client, function, 
params)”.  All other connections will be disconnected.  The code looks like this: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
67 



U S E R ’ S  G U I D E  

package com.mycompany.module; 
 
import com.wowza.wms.module.*; 
import com.wowza.wms.client.*; 
import com.wowza.wms.amf.*; 
import com.wowza.wms.request.*; 
 
public class MyModule extends ModuleBase 
{ 
 public void play(IClient client, RequestFunction function, AMFDataList params) 
 { 
  boolean disconnect = false; 
  if (params.get(PARAM1).getType() == AMFData.DATA_TYPE_STRING) 
  { 
   String playName = params.getString(PARAM1); 
   if (playName.startsWith("goodstream/")) 
   { 
    playName += "_good"; 
    params.set(PARAM1, new AMFDataItem(playName)); 
   } 
   else 
    disconnect = true; 
  } 
   
  if (disconnect) 
   client.setShutdownClient(true); 
  else 
   this.invokePrevious(client, function, params); 
 } 
} 

onCall 

The onCall method is a catch-all for any methods that are undefined by custom methods.  The 
interface for this method is defined in the IModuleOnCall interface class.  The onCall method 
functions the same as an event method in that all onCall methods defined in all modules will be 
called.  Example: 

package com.mycompany.module; 
 
import com.wowza.wms.module.*; 
import com.wowza.wms.client.*; 
import com.wowza.wms.amf.*; 
import com.wowza.wms.request.*; 
 
public class MyModule extends ModuleBase implements IModuleOnCall 
{ 
 public void onCall(String handlerName, IClient client,  

RequestFunction function, AMFDataList params) 
 { 
  getLogger().info("onCall: "+handlerName);  
 } 
} 

Your modules are going to use a combination of the method types described above.  When you 
are creating custom modules, you might want to group them according to functionality so they 
can be shared by your applications. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
68 



U S E R ’ S  G U I D E  

Custom Method Parameters 
Parameters passed from the Flash player client to Wowza Media Server Pro need to be marshaled 
to Java primitive and object types.  The com.wowza.wms.module.ModuleBase class includes a 
number of helper functions and constants for converting the parameter values.  For more 
complex types the com.wowza.wms.amf package contains an API for object conversion.  Consult 
the server API javadocs and the “Server Side Coding” example for more detailed information.  
Below is a simple example of converting three incoming parameters: 

package com.mycompany.module; 
 
import com.wowza.wms.module.*; 
import com.wowza.wms.client.*; 
import com.wowza.wms.amf.*; 
import com.wowza.wms.request.*; 
 
public class MyModule extends ModuleBase 
{ 
 public void myFunction(IClient client,  

RequestFunction function, AMFDataList params) 
 { 
  String param1 = getParamString(params, PARAM1);  
  int param2 = getParamInt(params, PARAM2);  
  boolean param3 = getParamBoolean(params, PARAM3); 
 } 
} 

Returning Results from a Custom Method 
A custom method may return a single result value.  This value must be converted to an Action 
Message Format (AMF) object to be understood by the Flash player client.  These value types can 
include simple types like strings, integers and booleans as well as more complex types like objects, 
arrays or arrays of objects.  The com.wowza.wms.module.ModuleBase class includes a number of 
helper functions for returning simple types.  For more complex types the com.wowza.wms.amf 
package contains an API for object creation and conversion.  Consult the server API javadocs 
and the “Server Side Coding” example for more detailed information.  Below is a simple example 
of three methods returning simple value types: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
69 



U S E R ’ S  G U I D E  

package com.mycompany.module; 
 
import com.wowza.wms.module.*; 
import com.wowza.wms.client.*; 
import com.wowza.wms.amf.*; 
import com.wowza.wms.request.*; 
 
public class MyModule extends ModuleBase 
{ 
 public void myFunctionString(IClient client,  

RequestFunction function, AMFDataList params) 
 { 
  sendResult(client, params, "Hello World"); 
 } 
 
 public void myFunctionInt(IClient client,  

RequestFunction function, AMFDataList params) 
 { 
  sendResult(client, params, 536); 
 } 
 
 public void myFunctionBoolean(IClient client,  

RequestFunction function, AMFDataList params) 
 { 
  sendResult(client, params, true); 
 } 
} 

Module Logging 
A custom method can get access to the server’s logging interface using the getLogger() helper 
method that is implemented by the com.wowza.wms.module.ModuleBase base class.  Log 
messages can be written to the log files by using one of the following four methods: 

getLogger().debug(logStr); 
getLogger().info(logStr); 
getLogger().warn(logStr); 
getLogger().error(logStr); 

Server To Client Calls 
A custom server side method can call a function in Flash player client directly by invoking the 
IClient.call() method.  The client call can return a single variable that will be received by the server 
by creating a result object that implements the com.mycompany.module.IModuleCallResult 
interface. The IClient.call() method has two forms: 

public abstract void call(String handlerName); 
public abstract void call(String handlerName,  

IModuleCallResult resultObj, Object ... params); 

Methods on the client side are made available to the server by attaching them to the 
NetConnection object.  Below is sample client side code: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
70 



U S E R ’ S  G U I D E  

var nc:NetConnection; 
 
nc = new NetConnection(); 
nc.serverToClientMethod = function(param1, param2) 
{ 
 return "Hello World"; 
} 
nc.connect("rtmp://wms.mycompany.com/mymodules"); 

To call this method from the server, the custom method would look like this: 

package com.mycompany.module; 
 
import com.wowza.wms.module.*; 
import com.wowza.wms.client.*; 
import com.wowza.wms.amf.*; 
import com.wowza.wms.request.*; 
 
class MyResult implements IModuleCallResult 
{ 
 public onResult(IClient client,  

RequestFunction function, AMFDataList params) 
{ 
 String returnValue = getParamString(params, PARAM1); 
 getLogger().info("got Result: "+ returnValue); 

 } 
} 
 
public class MyModule extends ModuleBase 
{ 
 public void myFunction(IClient client,  

RequestFunction function, AMFDataList params) 
 { 
  client.call("serverToClientMethod", new MyResult(), 

"param1: value", 1.5); 
 } 
} 

Java Management Extensions (JMX) 
All modules instantiated for a given application instance will be made available through the Java 
Management Extension’s (JMX) Interface.  The path to the modules section in the MBean 
interface is: 

WowzaMediaServerPro/VHosts/[vHostName]/Applications/[applicationName]/ 
  ApplicationInstance/[applicationInstanceName]/Modules 

All public methods and properties (wrapped in Java Bean get/set methods) will be made available 
through the “Instance” object found within each module definition.  If you want to exclude a 
method or property from the JMX interface, import the “com.wowza.util.NoMBean” class and 
add the “@NoMBean” annotation to your method definition. So what this means is that your 
custom modules are instantly made available through the Wowza Pro administration interface 
without an additional programming.  All property values can be inspected, properties with 
“get[property-name]” accessors can be changed and methods with simple Java types can be 
invoked through JConsole or VisualVM. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
71 



U S E R ’ S  G U I D E  

Other Server Extension Options 
There are several other ways of using custom modules to extend the functionality of Wowza 
Media Server Pro.  This section will cover two of these extension points; ServerListeners and 
HTTPProviders. 

ServerListeners 

A ServerListener is a class that gets invoked during the initialization process of the Wowza Pro 
server.  It is notified of events during the life cycle of the server.  This extension point can be used 
to startup custom functionality that is going to co-exist along side the Wowza Pro server.  This 
mechanism might be used to auto-start a servlet container that will handle http requests or a 
SOAP server for providing a custom SOAP interface to integrate with a Windows .NET 
application or non-Java application. 

A ServerListener must implement the com.wowza.wms.server.IServerNotify2 interface.  
Configuration for this extension point is done in the Server.xml file by adding an 
<ServerListener> entry to the <ServerListeners> list and setting the <BaseClass> value to the 
full path to your ServerListener class.  Below is a simple ServerListener class: 

package com.mycompany.module; 
 
import com.wowza.wms.application.*; 
import com.wowza.wms.logging.*; 
import com.wowza.wms.server.*; 
 
public class TestServerListener implements IServerNotify2 
{ 
 public void onServerConfigLoaded(IServer server) 

{ 
  WMSLoggerFactory.getLogger(Application.class).debug("onServerConfigLoaded "); 
 } 
 
 public void onServerCreate(IServer server) 
 { 
  WMSLoggerFactory.getLogger(Application.class).debug("serverCreate"); 
 } 
 
 public void onServerInit(IServer server) 
 { 
  WMSLoggerFactory.getLogger(Application.class).debug("serverInit"); 
 } 
 
 public void onServerShutdownComplete(IServer server) 
 { 
  WMSLoggerFactory.getLogger(Application.class).debug("serverShutdownComplete"); 
 } 
 
 public void onServerShutdownStart(IServer server) 
 { 
  WMSLoggerFactory.getLogger(Application.class).debug("serverShutdownStart"); 
 } 
 
} 

To add this ServerListener to Server.xml the XML snippet looks like this: 

<ServerListeners> 
 <ServerListener> 
  <BaseClass>com.mycompany.module.TestServerListener</BaseClass> 
 </ServerListener> 
</ServerListeners> 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
72 



U S E R ’ S  G U I D E  

HTTPProviders 

An HTTPProvider is a class bound to a HostPort definition in the VHost.xml configuration file.  
This class is invoked when http requests are made to the serer over the port defined by the 
HostPort.  The API for this extension point is very similar to the HTTPServlet API.  This 
extension point can be used to provide an HTML interface into the Wowza Pro server.  This 
mechanism might be used to create a custom administration interface to the server or provide 
query parameter output consumable by the Flash player LoadVars mechanism to provide a 
custom load balancing solution. 

An HTTPProvider must implement the com.wowza.wms.http.IHTTPProvider interface.  
Configuraiton for this extension point is done in the VHost.xml file.  Below is a simple 
HTTPProvider class: 

import java.io.OutputStream; 
 
import com.wowza.wms.application.WMSProperties; 
import com.wowza.wms.bootstrap.*; 
import com.wowza.wms.stream.*; 
import com.wowza.wms.vhost.*; 
import com.wowza.wms.logging.*; 
 
public class HTTPServerVersion implements IHTTPProvider 
{ 
 private WMSProperties properties = null; 
 
 public void onBind(IVHost vhost, HostPort hostPort) 
 { 
 } 
 
 public void onUnbind(IVHost vhost, HostPort hostPort) 
 { 
 } 
 
 public void setProperties(WMSProperties properties) 
 { 
  this.properties = properties; 
 } 
  
 public void onHTTPRequest(IVHost vhost, IHTTPRequest req, IHTTPResponse resp) 
 { 
  String testStr = “HelloWorld; 
  String retStr = "<html><head><title>"+testStr+ 

"</title></head><body>"+ testStr+"</body></html>"; 
  try 
  { 
   OutputStream out = resp.getOutputStream(); 
   byte[] outBytes = retStr.getBytes(); 
   out.write(outBytes); 
  } 
  catch (Exception e) 
  { 
   WMSLoggerFactory.getLogger(HTTPServerVersion.class).error( 

"HTMLServerVersion: "+e.toString()); 
  } 
 } 
} 

 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
73 



U S E R ’ S  G U I D E  

Chapter 

8 
 

Virtual Hosting 
How do I let multiple users share my Wowza Media Server Pro? 

owza Media Server Pro can be configured to run multiple virtual host environments.  
Each of these virtual host environments has its own set of configuration files, 
application folders and log files.  This enables a single server to serve multiple users in 

separate environments.  By default the server is configured with a single virtual host named 
_defaultVHost_.  

 W

Configuration Files 
Below is a description of the VHosts.xml file in the conf directory that is used to define a virtual 
host. 

VHosts.xml 

The VHosts.xml configuration file is used to define each of the virtual host environments.  Below 
is a description of each of the items that are required to define a virtual host. 

VHosts/VHost/Name 

The name of the virtual host. 

VHosts/VHost/ConfigDir 

The configuration directory for the virtual host.  The contents of this directory will be described 
below. 

VHosts/VHost/ConnectionLimit 

The maximum number of simultaneous connections this virtual host can support.  If this value is 
zero the virtual host can have an unlimited number of simultaneous connections.   

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
74 



U S E R ’ S  G U I D E  

Typical Configuration 
Let’s jump in and look at a typical VHosts.xml file for a virtual host environment that contains 
two virtual hosts: “vhost1” and “vhost2”. 

<Root> 
 <VHosts> 
  <VHost> 
   <Name>vhost1</Name> 
   <ConfigDir>/home/vhosts/vhost1</ConfigDir> 
   <ConnectionLimit>0</ConnectionLimit> 
  </VHost> 
  <VHost> 
   <Name>vhost2</Name> 
   <ConfigDir>/home/vhosts/vhost2</ConfigDir> 
   <ConnectionLimit>0</ConnectionLimit> 
  </VHost> 
 </VHosts> 
</Root>  

The directory structure for these two virtual hosts would be the following: 

[/home/vhosts] 
[vhost1] 

  [applications] 
  [conf] 
   Application.xml 
   Authentication.xml 
   MediaCasters.xml 
   MediaReaders.xml 
   MediaWriters.xml 
   MP3Tags.xml    
   RTP.xml 
   Streams.xml 
   VHost.xml 
   rtp.password 
  [content] 
  [logs] 

[vhost2] 
  [applications] 
  [conf] 
   Application.xml 
   Authentication.xml 
   MediaCasters.xml 
   MediaReaders.xml 
   MediaWriters.xml 
   MP3Tags.xml 
   RTP.xml 
   Streams.xml 
   VHost.xml 
   rtp.password 
  [content] 
  [logs] 
 

 
 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
75 



U S E R ’ S  G U I D E  

Note 

See the logging section for instructions on how to configure per virtual host logging.. 

The process for virtual host configuration is very simple.  Virtual hosts are defined in the 
VHosts.xml file in the conf directory.  Each virtual host gets its own configuration directory 
structure that contains an application, conf and logs directory.  Each virtual host gets its own set 
of configuration files.  

It is very important to note that Wowza Media Server Pro only supports ip-address/port based 
virtual hosting and does not support domain named based virtual hosting.  What this means is 
that in VHost.xml each virtual host must define HostPort entries with unique ip-address and port 
combinations that do not conflict with other virtual hosts defined on a given server.  The 
following combinations represent valid vhost port configurations: 

vhost1: 
<HostPort> 
    <IpAddress>192.168.1.2</IpAddress> 
    <Port>1935</Port> 
<HostPort> 
 
vhost2: 
<HostPort> 
    <IpAddress>192.168.1.2</IpAddress> 
    <Port>1936</Port> 
<HostPort> 
 

Or 

vhost1: 
<HostPort> 
    <IpAddress>192.168.1.2</IpAddress> 
    <Port>1935</Port> 
<HostPort> 
 
vhost2: 
<HostPort> 
    <IpAddress>192.168.1.3</IpAddress> 
    <Port>1935</Port> 
<HostPort> 

Through the JMX interface and the VHosts.xml configuration file virtual hosts can be added, 
modified and deleted on the fly without stopping and restarting the server.  The virtual host 
operations can be accessed through JConsole.  First, with the server running start JConsole and 
select the “MBean” tab.  Open the “WowzaMediaServerPro” group and select the “Server” 
object.  The virtual host operations are found under the “Operations” tab.  There are three 
operations of interest: 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
76 



U S E R ’ S  G U I D E  

startVHost   - start an individual vhost by name 
stopVHost   - stop an individual vhost by name 
reloadVHostConfig  - reload the VHosts.xml configuration file 
 

To add a new virtual host without restarting the server, edit “VHosts.xml” add a new virtual host 
definition and copy and configure a new set of configuration files as described above.  Next, open 
JConsole and navigate to the “Server” object and click the “reloadVHostConfig” to reload the 
“VHosts.xml” file.  Finally, enter the name of the new virtual host into the text entry box next to 
the “startVHost” button and click the button.  The new virtual host will be started immediately. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
77 



U S E R ’ S  G U I D E  

Chapter 

9 
 

Examples & AddOn Packages 
What do each of  these examples do and where do I get AddOn Packages? 

owza Media Server Pro ships with many examples that highlight the functionality of the 
server.  This chapter describes each of these examples and provides.  All examples are 
implemented using ActionScript 3.0.  For most examples, there is also an ActionScript 

2.0 implementation provided in the “clientAS2” folder that is inside each of the example folders. 

 W
Wowza Media Systems also provide several AddOn Packages that extend and enhance the 
functionality of Wowza Pro.  An up to date list of AddOn Packages can found here: 

http://www.wowzamedia.com/packages.html 

Note 

In the root folder of each example is a README.txt that contains any extra installation steps that 
are necessary to make the example function.  

SimpleVideoStreaming 
This example illustrates how to implement a custom video player that streams static Flash video 
(.flv) content from the server to the client.  It utilizes the “file” stream type. 

FastPlayVideoStreaming 
This example illustrates how to use the ModuleFastPlay module. Fast play is a TiVo® style fast 
forward/fast rewind streaming playback mechanism. 

LiveVideoStreaming 
This example illustrates how to setup and playback live video.  It utilizes the “live” stream type. 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
78 

http://www.wowzamedia.com/packages.html


U S E R ’ S  G U I D E  

NativeRTPVideoStreaming 
This example illustrates how to setup and playback live video from a native RTP source.  It 
utilizes the “rtp-live” stream type. 

VideoChat 
This example illustrates how to implement video chat between two users.  It utilizes the “live-
lowlatency” stream type and uses the Camera and Microphone objects to obtain video and audio 
content.  The example can either stream video and audio data between two client connections or 
loop the data back to itself. 

VideoRecording 
This example illustrates how to implement client to server video recording.  It utilizes the 
“record” stream type and uses the Camera and Microphone objects to obtain video and audio 
content. 

TextChat 
This example illustrates how to implement a simple text chat application. 

SHOUTcast 
This example illustrates how re-stream SHOUTcast MP3 or AAC+ audio data through the 
Wowza Pro server.  It utilizes the “shoutcast” stream type. 

RemoteSharedObjects 
This example illustrates the basics of remote shared objects.  It implements the basic remote 
shared object interface and the onSync event handler to highlight how data is synchronized 
between client connections.  To see the data synchronization in action, try opening two instances 
of the example.  While you make changes in one instance you will see the data update in the other. 

ServerSideModules 
This example is referenced by the Wowza IDE: User’s Guide and is a good starting point to learn 
how to create your first custom server side module. 

MediaSecurity 
Wowza Media Systems provides a media security package that includes SecureToken and 
SecureURLParams functionality as well as a document that covers other methods of securing 
Wowza Pro.  To obtain the latest version of this package visit the following Wowza Pro forum 
thread: 

http://www.wowzamedia.com/forums/showthread.php?t=1281 

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
79 

http://www.wowzamedia.com/forums/showthread.php?t=1281


U S E R ’ S  G U I D E  

Copyright © 2006 - 2009 Wowza Media Systems, Inc.  All rights reserved. 
80 

BWChecker 
This example provide a means for testing the bandwidth between individual Flash client 
connections and he Wowza Pro server.  It includes both a debugging tool that can be used to 
interactively test bandwidth as well as Flash code that you can embed into your Flash application. 

LoadBalancer 
Wowza Media Systems provides a dynamic load balancing package that you can add to the 
Wowza Media Server Pro.  To obtain the latest version of this package visit the following Wowza 
Pro forum thread: 

http://www.wowzamedia.com/forums/showthread.php?t=4637 

RTMPSConnectionModule 
This example illustrates how to create a module that can accept RTMPS connections. 

http://www.wowzamedia.com/forums/showthread.php?t=4637

